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1. Introduction
The term molecular mechanics (MM) refers to the use of

simple potential-energy functions (e.g., harmonic oscillator
or Coulombic potentials) to model molecular systems.
Molecular mechanics approaches are widely applied in
molecular structure refinement, molecular dynamics (MD)
simulations, Monte Carlo (MC) simulations, and ligand-
docking simulations.

Typically, molecular mechanics models consist of spheri-
cal atoms connected by springs which represent bonds.
Internal forces experienced in the model structure are
described using simple mathematical functions. For example,
Hooke’s law is commonly used to describe bonded interac-
tions, and the nonbonded atoms might be treated as inelastic
hard spheres or may interact according to a Lennard-Jones
potential. Using these simple models, a molecular dynamics
simulation numerically solves Newton’s equations of motion,
thus allowing structural fluctuations to be observed with
respect to time.

Dynamic simulation methods are widely used to obtain
information on the time evolution of conformations of
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proteins and other biological macromolecules1-4 and also
kinetic and thermodynamic information. Simulations can
provide fine detail concerning the motions of individual
particles as a function of time. They can be utilized to
quantify the properties of a system at a precision and on a

time scale that is otherwise inaccessible, and simulation is,
therefore, a valuable tool in extending our understanding of
model systems. Theoretical consideration of a system ad-
ditionally allows one to investigate the specific contributions
to a property through “computational alchemy”,5 that is,
modifying the simulation in a way that is nonphysical but
nonetheless allows a model’s characteristics to be probed.
One particular example is the artificial conversion of the
energy function from that representing one system to that
of another during a simulation. This is an important technique
in free-energy calculations.6 Thus, molecular dynamics
simulations, along with a range of complementary compu-
tational approaches, have become valuable tools for inves-
tigating the basis of protein structure and function.

This review offers an outline of the origin of molecular
dynamics simulation for protein systems and how it has
developed into a robust and trusted tool. This review then
covers more recent advances in theory and an illustrative
selection of practical studies in which it played a central role.
The range of studies in which MD has played a considerable
or pivotal role is immense, and this review cannot do justice
to them; MD simulations of biomedical importance were
recently reviewed.4 Particular emphasis will be placed on
the study of dynamic aspects of protein recognition, an area
where molecular dynamics has scope to provide broad and
far-ranging insights. This review concludes with a brief
discussion of the future potential offered to advancement of
the biological and biochemical sciences and the remaining
issues that must be overcome to allow the full extent of this
potential to be realized.

1.1. Historical Background
MD methods were originally conceived within the theo-

retical physics community during the 1950s. In 1957, Alder
and Wainwright7 performed the earliest MD simulation using
the so-called hard-sphere model, in which the atoms inter-
acted only through perfect collisions. Rahman8 subsequently
applied a smooth, continuous potential to mimic real atomic
interactions. During the 1970s, as computers became more
widespread, MD simulations were developed for more
complex systems, culminating in 1976 with the first simula-
tion of a protein9,10 using an empirical energy function
constructed using physics-based first-principles assumptions.
MD simulations are now widely and routinely applied and
especially popular in the fields of materials science11,12 and
biophysics.

As will be discussed later in this review, a variety of
experimental conditions may be simulated with modern
theories and algorithms. The initial simulations only con-
sidered single molecules in vacuo. Over time, more realistic
or at least biologically relevant simulations could be per-
formed. This trend is continuing today.

The initial protein MD simulation, of the small bovine
pancreatic trypsin inhibitor (BPTI), covered only 9.2 ps of
simulation time. Modern simulations routinely have so-called
equilibration periods much longer than that, and production
simulations of tens of nanoseconds are routine, with the first
microsecond MD simulation being reported in 1998.13 In
addition, the original BPTI simulation included only about
500 atoms rather than the 104-106 atoms that are common
today. While much of this advancement results from an
immense increase in availability of computing power, major
theoretical and methodological developments also contribute
significantly.

Stewart A. Adcock was a recent postdoctoral researcher in J. Andrew
McCammon’s research group at the University of California, San Diego
(UCSD). He was born in Norwich, England, in 1975. He received his
MChem degree in Chemistry from the University of Sheffield and his D.Phil.
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structural prediction and simulation of transmembrane proteins, under the
guidance of W. G. Richards. Between 2001 and 2004 he was a UCSD
research scholar, during which time he developed protocols and software
for protein structure modeling and prediction. Currently, he is a scientific
software consultant with Tessella Support Services PLC and has interest
in high-performance scientific software and computing platforms.

J. Andrew McCammon is an Investigator of the Howard Hughes Medical
Institute and holds the Joseph E. Mayer Chair of Theoretical Chemistry
at the University of California, San Diego (UCSD). He was born in
Lafayette, Indiana, in 1947. He received his B.A. degree from Pomona
College and his Ph.D. degree in Chemical Physics from Harvard University,
where he worked with John Deutch on biological applications of statistical
mechanics and hydrodynamics. In 1976−78 he was a research fellow at
Harvard, where he developed the computer simulation approach to protein
dynamics in collaboration with Martin Karplus. He joined the faculty of
the University of Houston as Assistant Professor of Chemistry in 1978
and was appointed to the M. D. Anderson Chair at Houston in 1981. He
moved to his current positions at UCSD in 1995. His industrial consulting
started in 1987 with the establishment of the computer-aided drug discovery
program of Agouron Pharmaceuticals. About 50 of his former students
hold tenured or tenure-track positions at leading universities or research
institutes. His awards include the George Herbert Hitchings Award for
Innovative Methods in Drug Design from the Burroughs Wellcome Fund
and the Smithsonian Institution’s Award for Breakthrough Computational
Science, sponsored by Cray Research. New directions in his research
group include theoretical efforts to understand how supramolecular and
cellular activity emerge from the molecular level, particularly in neural
synapses.
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The number of publications regarding MD theory and
application of MD to biological systems is growing at an
extraordinary pace. A single review cannot do justice to the
recent applications of MD. Using data from ISI Web of
Science, the authors estimate that during 2005 at least 800
articles will be published that discuss molecular dynamics
and proteins. The historical counts are shown in Figure 1.

1.2. Protein Dynamics
The various dynamic processes that can be characterized

for proteins have time scales ranging from femtoseconds to
hours. They also cover an extensive range of amplitudes and
energies. Many of these motions have critical roles in
biochemical functions.14 Rapid and localized motions may
play a role in enzymatic reactions. Slower motions that occur
on the scale of whole proteins include allosteric coupling15

and folding transitions. Subunit associations occur over even
longer distances.

Simulations of the longer time scale folding events are
covered elsewhere in this issue.16 Characteristic time scales
for protein motions are shown in Table 1.

2. Application of Molecular Dynamics in the
Study of Biomolecular Phenomena

Molecular dynamics can now be routinely applied in the
investigation of a wide range of dynamic properties and
processes by researchers in numerous fields, including
structural biochemistry, biophysics, enzymology, molecular
biology, pharmaceutical chemistry, and biotechnology. Using
MD simulations, one is able to study thermodynamic
properties and time-dependent (i.e., kinetic) phenomena. This
enables an understanding to be developed of various dynamic

aspects of biomolecular structure, recognition, and function.
However, when used alone, MD is of limited utility. An MD
trajectory (i.e., the progress of simulated structure with
respect to time) generally provides data only at the level of
atomic positions, velocities, and single-point energies. To
obtain the macroscopic properties in which one is usually
interested requires the application ofstatistical mechanics,
which connects microscopic simulations and macroscopic
observables.

Statistical mechanics provides a rigorous framework of
mathematical expressions that relate the distributions and
motions of atoms and molecules to macroscopic observables
such as pressure, heat capacity, and free energies.17,18

Extraction of these macroscopic observables is therefore
possible from the microscopic data, and one can predict, for
instance, changes in the binding free energy of a particular
drug candidate or the mechanisms and energetic conse-
quences of conformational change in a particular protein.

Specific aspects of biomolecular structure, kinetics, and
thermodynamics that may be investigated via MD include,
for example, macromolecular stability,19 conformational and
allosteric properties,20 the role of dynamics in enzyme
activity,21,22 molecular recognition and the properties of
complexes,21,23ion and small molecule transport,24,25protein
association,26 protein folding,27,16 and protein hydration.28

MD, therefore, provides the opportunity to perform a
variety of studies including molecular design (drug design29

and protein design30) and structure determination and refine-
ment (X-ray,31 NMR,32 and modeling33).

3. Molecular Dynamics Methods and Theory
Given the structure of a biomolecular system, that is, the

relative coordinates of the constituent atoms, there are various
computational methods that can be used to investigate and
study the dynamics of that system. In the present section, a
number of such methods are described and discussed. The
majority of important dynamics methodologies are highly
dependent upon the availability of a suitable potential-energy
function to describe the energy landscape of the system with
respect to the aforementioned atomic coordinates. This
critical aspect is, therefore, introduced first.

3.1. Potential Functions and the Energy
Landscape

Choice of an appropriate energy function for describing
the intermolecular and intramolecular interactions is critical
to a successful (i.e., valid yet tractable) molecular dynamics

Figure 1. Articles matching ISI Web of Science query
“TS)(protein) AND TS)(molecular dynamics)”.

Table 1. Characteristic Time Scales for Protein Motions

event
spatial

extent (nm)
amplitude

(nm) time (s) appropriate simulations

bond-length vibration 0.2-0.5 0.001-0.01 10-14-10-13 QM methods
elastic vibration of globular domain 1.0-2.0 0.005-0.05 10-12-10-11 conventional MD
rotation of solvent-exposed side chains 0.5-1.0 0.5-1.0 10-11-10-10 conventional MD
torsional libration of buried groups 0.5-1.0 0.05 10-11-10-9 conventional MD
hinge bending (relative
motion of globular domains)

1.0-2.0 0.1-0.5 10-11-10-7 Langevin dynamics, enhanced
sampling MD methods?

rotation of buried side chains 0.5 0.5 10-4-1 enhanced sampling MD methods?
allosteric transitions 0.5-4.0 0.1-0.5 10-5-1 enhanced sampling MD methods?
local denaturation 0.5-1.0 0.5-1.0 10-5-101 enhanced sampling MD methods?
loop motions 1.0-5.0 1.0-5.0 10-9-10-5 Brownian dynamics?
rigid-body (helix) motions 1.0-5.0 10-9-10-6 enhanced sampling MD methods?
helix-coil transitions >5.0 10-7-104 enhanced sampling MD methods?
protein association .1.0 Brownian dynamics
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simulation. In conventional MD simulations, the energy
function for nonbonded interactions tends to be a simple
pairwise additive function (for computational reasons) of
nuclear coordinates only. This use of a single nuclear
coordinate to represent atoms is justified in terms of the
Born-Oppenheimer approximation.34 For bonded groups of
atoms, that is those that form covalent bonds, bond angles,
or dihedral angles, simple two-body, three-body, and four-
body terms are used, as described below.

The energy functions usually consist of a large number
of parametrized terms. These parameters are chiefly obtained
from experimental and/or quantum mechanical studies of
small molecules or fragments, and it is assumed that such
parameters may be transferred to the larger molecule of
interest. The set of functions along with the associated set
of parameters is termed a force field. A variety of force fields
have been developed specifically for simulation of proteins.

There are notable exceptions, but it is usual for a force
field to be purely additive. For instance, bond lengths are
not considered to be dependent on the bond angles, and
atomic partial charges are fixed in magnitude. This is
generally considered to give a reasonable, although not
flawless,35 approximation of the potential-energy landscape.
Alternative methods for probing dynamics might demand
additional restrictions or properties to be satisfied by the
potential functions, and these are detailed in the appropriate
sections of this review.

Some force fields, often termed class II force fields, do
incorporate cross terms or higher order terms.36-38 These
class II force fields were typically developed to reproduce
vibrational spectra accurately or treat structures with geom-
etries far from their equilibrium values.

One fairly typical and widely applied force field is the
CHARMM22 force field.39-41 Like all widely applied force
fields, it consists of several discrete terms. Each of these
terms possesses a simple functional form and describes an
intermolecular or intramolecular force exhibited within the
system given the set of relative atomic coordinates

whereKd, KUB, Kθ, Kø, andKæ are the bond length, Urey-
Bradley (1-3 bond length), bond angle, dihedral angle, and
improper dihedral angle force constants, respectively. Like-
wise,d, S, θ, ø, andæ are the bond length, Urey-Bradley
(1-3 bond length), bond angle, dihedral angle, and improper
dihedral angle values exhibited in the current configuration,
and the zero subscript represents the reference, or equilib-
rium, values for each of those. These terms represent the
bonded interactions. The final term in the function represents
the nonbonded interactions, incorporating Coulombic and
Lennard-Jones interactions.∈ij relates to the Lennard-Jones
well depth,Rij

min is the distance at which the Lennard-Jones
potential is zero,qi is the partial atomic charge of atomi, ∈l

is the effective dielectric constant, andrij is the distance
between atomsi andj. The Lorentz-Berthelodt combination

rules42 are used to obtain the necessary Lennard-Jones
parameters for each pair of different atoms;∈ij values are
the geometric mean of the∈ii and ∈jj values, whileRij

min

values are the arithmetic mean of theRii
min andRjj

min values.
Values for the atomic partial charges,qi, are determined from
a template-based scheme, with charges often modified to
reproduce dielectric shielding effects (i.e., to mimic some
of the effects of shielding from a high dielectric constant
solvent). This∈l is usually set to unity for simulations
incorporating explicit solvent representations.

Using eq 1 one may evaluate the potential energy,V(r),
of the system from a single set of atomic coordinates since
the relevant distances and angles are easily determined. The
energy is that of a single instance, termed a snapshot, of the
system.

V(r) includes contributions from every bond angle and
dihedral angle in the system; however, it might be noted that
many Urey-Bradley terms and improper dihedral angles are
not used. Only those that are required for fitting computa-
tional results to observable vibrational spectra are utilized.
In addition, the linear term in the original Urey-Bradley
function is not incorporated at all. This is a reasonable
approximation because it has been shown that, when Car-
tesian coordinates are used, only the quadratic term is
required for determining vibrational frequencies.43 The
nonbonded terms are applied to all atoms except those
attached through one or two covalent bonds. In certain,
specific, cases the Lennard-Jones term is adjusted for atoms
connected through three covalent bonds in order to accurately
reproduce experimentally observed structures. An example
of such a case is the nitrogen and oxygen atoms of amides.

For the purposes of MD, it is advantageous for the force
field to have efficiently accessible first and second derivatives
with respect to atomic position (which correspond to the
physical characteristics of atomic force and force gradients,
respectively), and this is one of the more notable reasons
for the very simple mathematical forms generally chosen.

The CHARMM force fields have been separately param-
etrized for proteins,39 nucleic acids,44 lipids,45 and carbohy-
drates46,47 with the goal of consistency between these sets,
allowing for simulation of heterogeneous systems. Different
force fields exist for small organic molecules48-51 and
nonbiological macromolecules such as zeolites.

3.2. Energy Minimization
Although not strictly a dynamics method, energy mini-

mization is a fundamental concept upon which much of the
theory discussed in this review is built.

Given a set ofN independent variables,r, wherer ) (r1,
r2, r3, ..., rN), the task is to find the values for each of those
variables, termedrmin, for which a particular function,V(r),
has its global minimum. In the case of a molecular mechanics
protein model,N is typically three times the number of atoms
(resulting from three degrees of freedom per atomic coor-
dinate),r encodes the atomic coordinates (e.g., the Cartesian
coordinates), andV is the potential energy as given by an
equation such as eq 1. It may be seen that computationally
this task is a nonlinear optimization problem.

Numerous algorithms exist for solving such nonlinear
optimization problems, and a small selection of these are
widely applied in molecular mechanics modeling of proteins.
Relevant algorithms are reviewed elsewhere.52,53

It is extremely difficult to locate the global minimum of
a general nonlinear function with more than a dozen

V (RB) ) ∑
bonds

Kd(d - d0)
2 + ∑

Urey-Bradley

KUB(S- S0)
2 +

∑
angle

Kθ(θ - θ0)
2 + ∑

dihedrals

Kø(1 + cos(nø - δ)) +

∑
impropers

Kæ(æ - æ0)
2 +

∑
nonbond

{∈ij[(Rij
min

rij
)12

- (Rij
min

rij
)6] +

qiqj

∈lrij
} (1)
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independent variables. Typical biomolecular systems with
as few as a hundred atoms will be described with on the
order of 300 variables; thus, it is usually impossible to
provably locate the global minimum. Also, while energy
minimization methods may be used to efficiently refine
molecular structures, they are totally inadequate for sampling
conformational space. Given an unrefined molecular structure
with bond angles and lengths distorted from their respective
minima or with steric clashes between atoms, energy
minimization methods can be very useful for correcting these
flaws and are therefore routinely applied to protein systems.
The most popular methods include those that use derivatives
of various orders, including the first-order (i.e., utilizes first-
order derivatives) steepest descent and conjugate gradient
methods and the second-order (i.e., utilizes second-order
derivatives) Newton-Raphson method.

The steepest descent method is one of several first-order
iterative descent methods. These all utilize the gradient of
the potential-energy surface, which directly relates to forces
in the MM description of molecular systems, to guide a
search path toward the nearest energy minimum. Because
this corresponds to reducing the potential energy by moving
atoms in response the force applied on them by the remainder
of the system, this method is attractive as it may be
considered to have a behavior that is physically meaningful.
Formally, the force vector is defined asF(r) ) -d/dr V(r)
wherer is the vector of atomic coordinates.

In all of the iterative descent methods, a succession of
atomic configurations are generated by applying, for iteration
k, the relationshipx(k) ) x(k - 1) + λ(k)F(k), where the
vectorx represents the 3N dimensional configuration,λ(k)
is a step size, andF(k) is the force vector. The step size for
the first iteration is usually selected arbitrarily or else by
some simple heuristic. After every iteration this step size is
adjusted according to whether the overall potential energy
of the system was reduced or increased by that step. If the
energy increased, it is assumed that the step size was
sufficiently large to jump over the local minimum along the
search direction, and accordingly the step size is reduced by
some multiplicative factor, typically 0.5. In the event that
the energy was indeed reduced, the step size is increased by
some factor, typically around 1.2. This continual adjustment
of the step size keeps it roughly appropriate for the particular
curvature of the potential-energy function in the region of
interest. While the steepest descent method is highly inef-
ficient for multidimensional problems with irregular potential
surfaces with multiple local minima, it is robust in locating
the closest local minimum. Consequently, the global motions
required to locate the global energy minimum will not be
observed. Nonetheless, it is very effective in removing steric
conflicts and relaxing bond lengths and bond angles to their
canonical values.

The Newton-Raphson method is a popular second-
derivative method, although it requires some simple modi-
fications before it is suited to typical biomolecular MM
systems. The basic method relies on the assumption that, at
least in the region of the minima, the potential energy is
quadratically related to the individual variables.V(xi) = a
+ bxi + cxi

2, wherea, b, andc are constants. This leads to
first and second derivatives of

At the minimum, dV(xmin)/dx ) 0, soxmin may be calculated
using

For quadratic surfaces, no iterative searching is necessary
since the exact minimum may be determined from the current
configuration and the derivatives at that configuration.
Unfortunately, biomolecular MM systems tend to be ex-
tremely nonquadratic and also contain many local minima.
These characteristics render the basic Newton-Raphson
method less useful. However, it has found widespread use
as a method for efficiently completing the optimization
performed via an alternative method. One modified form of
the method, adopted basis set Newton-Raphson (ABNR),
is very effective for large biomolecular systems.41

3.3. Adiabatic Mapping
The simplest approach to studying motion in proteins is

the characterization of low-energy paths for specific motions.
This approach is termed “adiabatic mapping”.54

The protocol typically followed involves forcing specific
atoms to move along a predetermined path to cause a
structural change of interest. The remaining atoms are
allowed to move freely, subject to the potential-energy
landscape, to reduce (or minimize) the overall potential
energy at each point along the path. It is assumed that, since
shifts in atomic coordinates will roughly correspond to the
structural fluctuations required to allow the motion, these
energies approximate the change in energies that should be
observed during the associated real, spontaneous, motion.

Adiabatic mapping is computationally inexpensive and has
therefore been applied to study many structural changes of
various magnitudes or scales. No direct information on the
time scales of dynamic mechanisms is obtained, although
some approximate results can be derived from the relaxed
energies in analytical models of the dynamics (e.g., the
Langevin equation, below).

The major flaw in this method is the dependence of the
results on the path selected to represent, or drive, the entire
motion. If the motion actually proceeds along a different path,
then misleading results will be obtained. Quantitative errors
are also to be expected due to any incomplete conformational
relaxation, chiefly overestimation of enthalpy barriers caused
by incomplete relaxation of delocalized strain. Energy
minimization algorithms tend to be inefficient with respect
to nonlocal strain (i.e., that which may be driving large
domain motions). In addition, this approach ignores certain
important thermal effects. For instance, neither the entropy
nor the temperature dependence of the enthalpy is ordinarily
obtained, despite these being important factors in the kinetics
of structural motions.

3.4. Molecular Dynamics
In simple terms, molecular dynamics simulations involve

the iterative numerical calculation of instantaneous forces
present in a MM system and the consequential movements
in that system. The MM system consists of a set of particles
that move in response to their interactions according to the
equations of motion defined in classical (i.e., Newtonian)

xmin ) -b
2c

)
(2cx -

dV(x)
dx )

(d2V(x)

dx2 )
) x -

(dV(x)
dx )

(d2V(x)

dx2 )
(3)

dV(x)
dx

) b + 2cx and
d2V(x)

dx2
) 2c (2)
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mechanics. Classical MD is much more efficient than might
be expected from full consideration of the physics of
biomolecular systems due to the number of substantial
approximations. Notably, quantum dynamical effects are
usually ignored. Instead, each particle (typically a single
atom, but sometimes a rigid set of atoms) is considered to
be a point mass. This approximation is justified in terms of
the Born-Oppenheimer approximation34 (i.e., only the
nuclear displacements need to be considered). This section
provides a brief overview of the concepts upon which
molecular dynamics simulations are justified and imple-
mented.

For an atom,i, with massmi, and position indicated by
the 3-dimensional vectorr i, the relationship between the
atom’s velocity and momentum,pi, is

The net force,Fi, exerted on the atomi by the remainder of
the system is given by the negative gradient of the potential-
energy function with respect to the position of atomi

The Newtonian equation of motion for atomi is

Given the position with respect to a single component of
vector r i, (that is the position along a single dimension,x)
at a specific time,t, then the position after a short and finite
interval, denoted∆t, is given by a standard Taylor series

The positionx(t), the velocity dx(t)/dt, and the acceleration
d2x(t)/dt2 are sufficient for numerical solution to the equations
of motion if some approximation to account for higher order
terms in the Taylor series can be made. For this single
dimension, Newton’s second law describes the acceleration

whereFx is the component of the net force acting on the
atom parallel to the direction ofx.

This just leaves the unspecified approximation for the
infinite series of higher terms from the Taylor expansion to
be devised. The simplest approach is to assume that the
higher terms sum to zero, effectively truncating the Taylor
expansion at the second derivative, the acceleration. In the
general case, this is a very poor approximation as highlighted
by consideration of Newton’s third law. The net force acting
in the entire system should be zero, resulting in conservation
of the total energy (i.e., kinetic plus potential energies) and
conservation of the total momentum. With the simple
approximation suggested, significant fluctuations and drifting
over time occur in the total energy of the system as a
simulation progresses. A wide range of improvements to this

simple approximation are used in modern molecular dynam-
ics software, many of which are described later in this review.

Numerous algorithms exist for integrating the equations
of motion.55-58 Many of these are finite difference methods
in which the integration is partitioned into small steps, each
separated in time by a specific period∆t because the
continuous potentials describing atomic interaction preclude
an analytical solution. The simple Verlet algorithm55 uses
the atomic positions and accelerations at timet and the
positions from the prior step,x(t - ∆t), to determine the
new positions att + ∆t

A slight modification of this, known as the leapfrog
algorithm,59 is popular. The leapfrog algorithm uses the
positions at timet and the velocities at timet - (∆t/2) for
the update of both positions and velocities via the calculated
forces,F(t), acting on the atoms at timet

Alternative finite difference method integrators include the
velocity Verlet method57 and the Beeman algorithm.56 The
velocity Verlet method synchronizes the calculation of
positions, velocities, and accelerations without sacrificing
precision. The Beeman algorithm exhibits improved energy
conservation characteristics due to its more accurate expres-
sion for velocities.

All of these commonly used integrators are time reversible.
This means the direction of simulation in time is arbitrary.
If the velocities of all atoms were swapped in sign, the
simulation would run in exactly the reverse direction.

The computational expense of using any particular integra-
tion scheme is important, but for practical simulations of
proteins another consideration becomes even more critical.
The computational demands of the integration method are
insignificant compared to the calculation of all the forces
acting within the system. It is therefore advantageous to limit
the number of force calculations required during the simula-
tion. One method for doing this is to select an integrator
that allows longer time steps without deviating significantly
from the path of an exact, analytical trajectory.

The degree to which the Taylor series expansion is
important in determining the accuracy of each integrator
depends on which terms they include. The largest term in
the Taylor expansion which is not considered in a given
integration scheme defines the, so-called,order of that
method. The Verlet algorithm, for example, is a fourth-order
method with terms beyond∆t4 truncated.

A family of integration algorithms which are correct to a
selected error order are known as the predictor-corrector
methods.58 These methods initially estimate the positions,
velocities, accelerations, and any desired higher order terms
of the Taylor expansion. Next, forces are calculated with
these estimated positions giving new accelerations at time
(t + ∆t). The two sets of accelerations are compared, and a
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correction step adjusts the originally estimated positions,
velocities, etc.

3.4.1. Simulated Environment

A range of experimental conditions can be simulated by
MD. The earliest protein simulations9,10,60 considered the
molecules as isolated entities, effectively in a vacuum. Later
simulations included explicit water and neighboring protein
molecules as in a crystal environment. It is now conventional
to duplicate the system periodically in all directions to
represent an essentially infinite system. Typically, a cubic
lattice is used for replication of the central cubic box. The
atoms outside the central box are simply images of the atoms
simulated in that box. So-calledperiodic boundary conditions
ensure that all simulated atoms are surrounded by neighbor-
ing atoms, whether those neighbors are images or not. The
so-calledminimum image conVentionguarantees that dupli-
cate interactions between atoms are not included by calculat-
ing only one pairwise interaction for each pair of atoms. For
atoms i and j, the interaction is that between the original
atom i and whichever copy of atomj, original or image, is
closest to atomi.

Periodic boundary conditions are not restricted to cubic
systems. Other geometries are used including the rhombic
dodecahedron61 and the truncated octahedron.62 These can
significantly reduce the number of solvent atoms required
in the system, leading to a corresponding reduction in the
computational requirements. The range of possible geom-
etries suitable for periodic systems is limited, but stochastic
boundary conditions63 can be utilized, in the absence of
periodicity, with any system geometry.

Stochastic boundary conditions are particularly useful
when investigating only a particular region such as the
binding site in a ligand-binding study. This enables much
of the system that would otherwise be simulated to be
excluded, thus saving considerable computational resources.
The region of interest is enclosed within a shell, usually
spherical. The atoms belonging to this shell region are subject
to stochastic dynamics, for example, evaluated using the
Langevin equation. The stochastic shell region itself is
enclosed in a bath region in which the atoms are stationary.
This outer region forms a barrier that maintains the overall
structure of the system, while the shell region accommodates
any local fluctuations in conformation, density, or energy
that occur in the central region where standard MD is
performed. This approach has been applied in the study of
proteins,64 but the restrictive boundaries in the simplest
models are known to introduce artificial density fluctuations
and can alter the structure of solvents such as water.65 More
recent models have improved characteristics.66-68

3.4.2. SHAKE

From a fixed amount of computation, the length of a
simulation is determined by a number of factors including
the cost of evaluating interactions, number of interactions
that need to be evaluated at each time step, period of that
time step, and number of degrees of freedom that need to
be propagated. To increase the efficiency of a computer
simulation, any of those four aspects might be improved
upon. Increasing the time step period is, therefore, a simple
approach for extending tractable simulation time scales, but
a number of factors limit the step size.69 The number of
interactions to evaluate may be reduced via the use of implicit

solvent models, discussed later in this review, or by a reduced
representation of the biomolecular structure, also discussed
later.

Numerous algorithmic improvements can be applied to
enhance the stability and increase the efficiency of MD
simulations. The use of integrators with good stability
properties such as velocity Verlet57 and extensions such as
the reversible reference system propagator algorithm method
(RESPA)70 are typical and allow extended time steps to be
utilized. Improvements in efficiency are often obtained
through freezing the fastest modes of vibration by constrain-
ing the bonds to hydrogen atoms to fixed lengths using
algorithms such as SHAKE,60,71 RATTLE,72 and LINCS.73

Specifically, the use of RESPA and fixing of bond lengths
involving hydrogen atoms with SHAKE, RATTLE, or
LINCS allow the use of larger time-step (∆t) sizes without
any significant amount of degradation in the quality of the
trajectory (or in the accuracy of the simulation).

The SHAKE algorithm (otherwise known as the con-
strained Verlet method) is a straightforward modification of
the Verlet algorithm to impose constraints on the internal
coordinates such as bond lengths and bond angles. The length
of the time step is restricted by the requirement that∆t is
small compared to the period of the highest frequency
motions being simulated. For the biomolecular systems of
interest, the highest frequency motions are the bond stretch-
ing vibrations, yet these vibrations are generally of minimal
interest in the study of biomolecular structure and function.
Thus, algorithms, such as SHAKE, that constrain the bonds
to their equilibrium lengths are useful. In essence, they may
be considered as averaging out the highest frequency
vibrations.

In the SHAKE algorithm all constraints are imposed
through fixed interatomic distances. In the case of bond
lengths, single interatomic distances are sufficient. To
constrain bond angles the fact that three constituent atomic
coordinates are related through three interatomic distances
is relied on.

If constraintk is on the distance between atomsi and j,
then it may be expressed as

whererij is the vector from atomi to atomj (rij ) rj-ri) and
dij is the desired distance. At any given step during the
practical numerical simulation, the constraint is said to be
satisfied whenever the deviation is less than some threshold.
In the case of SHAKE, the constraint is satisfied whenrij

2

- dij
2 < ε/dk

2, whereε is a constant anddk
2 is the equilibrium

bond length.
All except the highest frequency motions of proteins are

not noticeably affected, although constraints are not recom-
mended for valence bond angles except for those in the rigid
water models.74 This is chiefly due to coupling between the
bond-angle motions and dihedral motions. It is also usually
applied only to the bonds with the fastest vibrations, namely,
those involving a hydrogen atom. Nonetheless, in practice
the time step can typically be increased by a factor of 3
compared to simulations with the original Verlet algorithm.

The LINCS constraint method directly resets the con-
straints rather than the derivatives of the constraints (i.e.,
resets the constrained distances rather than the velocities),
therefore avoiding drift inherent in the SHAKE method. It
is also reported to produce a further speed up of about four
times.73

r ij
2 - dij

2 ) 0 (12)
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Other improved variations of SHAKE have been proposed,
including MSHAKE,75 which performs matrix inversion to
solve the constraint equations. Such variants are suited to
systems with a limited number of interdependent constraints
(e.g., water) where the cost of inverting the matrix is
favorable compared to performing a large number of itera-
tions. This method is also useful when a high level of
accuracy in the application of constraints is desired. The
QSHAKE method76 introduces quaternion dynamics for rigid
fragments. The total number of holonomic constraints is
reduced, thus obtaining convergence within fewer iterations
and increasing stability under larger time steps. Generalized
SHAKE77 adds support for general nonholonomic constraints,
and no numerical drift is observed for large numbers of
constraints with this approach.

3.4.3. Experimental Conditions
Typically, it is important to accurately simulate the

experimental conditions to be replicated. Various values for
physical conditions, such as pressure and temperature, may
be readily considered in the simulations.

Ensembles.An ensemble is a collection of all possible
systems that have differing microscopic states but belong to
a single macroscopic or thermodynamic state.17 Various
different formal ensembles with differing characteristics exist.
The most widely simulated are as follows. (1) The canonical
ensemble (NVT): This is the collection of all systems whose
thermodynamic state is characterized by a fixed number of
atoms,N, fixed volume,V, and fixed temperature,T. (2) The
isobaric-isoenthalpic ensemble (NPH): An ensemble with
a fixed number of atoms,N, fixed pressure,P, and fixed
enthalpy,H. (3) The isobaric-isothermal ensemble (NPT):
An ensemble with a fixed number of atoms,N, fixed
pressure,P, and fixed temperature,T. (4) The grand canonical
ensemble (µVT): A thermodynamic state characterized by
a fixed chemical potential,µ, fixed volume,V, and fixed
temperature,T. (5) The microcanonical ensemble (NVE): A
thermodynamic state characterized by a fixed number of
atoms, N, fixed volume, V, and fixed energy,E. This
corresponds to a closed (i.e., isolated) system since energy
is conserved.

Most early simulations corresponded to the microcanonical
ensemble under so-called free dynamics. However, experi-
ments are usually performed at constant temperature and
volume (i.e., the canonical ensemble) or constant pressure
and temperature (i.e., the isobaric-isothermal ensemble), so
it is often desirable to simulate these conditions instead or
mimic these conditions or those expected under physiological
conditions. During a simulation at constant energy, the
temperature will be observed to fluctuate due to the
spontaneous interconversion of the kinetic and potential
components of the total energy. The instantaneous temper-
ature may be evaluated from the atomic velocities using

wherekB is Boltzmann’s constant,mi and vi are the mass
and velocity of atomI, respectively, andN is the total number
of atoms. If desired, the atomic velocities can be rescaled or
otherwise modified to keep the temperature constant during
the course of a simulation. It is worth mentioning that eq 13

must be corrected when constraint algorithms, such as
SHAKE, are used.78

To maintain a constant pressure during a simulation, the
volume needs to be allowed to fluctuate by adjusting the
dimensions of the periodic box and rescaling the atomic
positions accordingly. Numerous methods exist for running
MD simulations at a constant pressure properly. Methods
include the extended system algorithm,79 the constraint
algorithm,80 weak coupling to an external bath,81 thehybrid
method,82 and theLangeVin piston method.83

3.4.4. Solvation

A reasonable representation of a protein’s environment is
important for characterizing its properties through simula-
tions. At today’s levels of understanding and computational
resources, it is not currently possible to fully consider the
full physiological environment of any typical protein. Certain
specific cases can be considered more fully, but the general
case is too complicated. The nonphysiological cases that
involve proteins in crystal-packing arrangements or in vacuo
(such as in the original BPTI simulation9) are comparatively
trivial. Even simulations of in vitro systems have particular
issues to consider as outlined in this section. Nonetheless,
such systems are tractable, so an aqueous solvent is selected
as the environment for the vast majority simulations. Great
strides have been made for simulations in more specific
environments such as those for transmembrane proteins.24,25,84,85

Implicit Solvation. Most proteins exist, at least partially,
within an aqueous environment. Justified by this fact, it is
common to assume that a protein is fully solvated in pure
or ion-containing water during simulations. However, a
considerable portion of the computation time could be spent
evaluating the solvent-solvent interactions. It is therefore
desirable to avoid using explicit water when possible.
However, solvent effects are important and cannot be totally
disregarded. Consequently, numerous implicit solvent models
have been developed.86-89

In addition to the dielectric screening effects, an explicit
solvent contributes specific interactions that are often
important for mediating protein structure or function. Thus,
explicit solvents play an important role in simulations for
the accurate consideration of electrostatic effects90 and for
the valid decomposition of free energies, for example.
Conversely, implicit models of solvation allow for better
direct estimations of free energies of solvation than explicit
solvation models.91 The statistical mechanical characteristics
and properties of implicit solvation models have been
rigorously examined.92

One implicit solvent model is the generalized Born (GB)
model93,88 which, especially on parallel computer systems,
can be used to run significantly faster MD simulations than
can explicit solvent models.94 Like all implicit models, GB
is known to be unable to reproduce certain microscopic
solvent features.87 Moreover, implicit solvent models are
known to facilitate modified conformational dynamics of
protein molecules when compared to explicit models,95 which
is usually undesirable. A hybrid method which incorporates
explicit solvent molecules in a defined region of the system,
such as a binding site or a channel, is the generalized solvent
potential method.96 In this method a static solvent-shielded
field from the biomolecular solute is calculated using a finite-
difference Poisson-Boltzmann method. This field is used
to impose a solvent reaction field, and the specific region of
interest for explicit solvent is hydrated.

3kBT )

∑
i)1

N
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Apolar solvation models, using a cavity potential plus
dispersion potential decomposition, such as the analytical
generalized Born and nonpolar (AGBNP) solvent model,97

have been shown to be very effective. The apolar component
is likely to be necessary in the exploration of larger
conformational changes.98 This overcomes the poor correla-
tion often found between the apolar forces from explicit
solvent and implicit solvent simulations.99

Explicit Water Models. For cases when explicit consid-
eration of the solvent is desirable, or necessary, there is a
wide range of explicit water models available. The most
popular of these models include TIP3P, TIP4P,100 TIP5P,101

SPC, and SPC/E.102

Commonly, the parameters in water models are adjusted
such that the enthalpy of vaporization and the density of
water are reproduced in simulations. All of the above models
have a dipole moment of about 2.3 D instead of the
experimental gas-phase value of 1.85 D. The temperature
dependence of the density of water is not described well by
any of these models perhaps except the TIP5P model.

The most popular models for water are all consistent with
the SHAKE approximation, discussed above, since these
models for water treat the molecules as completely rigid.

MD simulations with only a thin layer of water around
the protein can overcome some of the problems of a purely
implicit solvent.103-105 The restrained water droplet model
applies a weak harmonic restraining force to a 5 Åshell of
water.106

Electrostatics.Long-range electrostatic interactions107play
a dominant role in protein structural stability and are also
crucial determinants in the initial encounter of many as-
sociation processes.26 Typically, the most computationally
expensive portion of a MD simulation is the evaluation of
these long-range electrostatic interactions.108,109 As the
number of charges in a system increases, the number of
Coulombic interactions will grow as the square of that
number, potentially resulting in a prohibitively large number
of interactions to evaluate.

In earlier MD simulations, a cutoff was applied to the
distance of electrostatic interactions, known asspherical
truncation.110,111The interactions beyond that cutoff distance,
for instance, at 12 Å, were ignored so that the maximum
number of interactions becomes bounded, assuming a finite
density. An abrupt cutoff distance introduces an energetic
discontinuity into the system, and this can lead to unstable
simulations, so smoothing functions are often applied instead.
To further reduce the computational cost, group-based
neighbor lists were introduced, but it is known that with such
techniques the energy is not conserved.111 The twin-range
cutoff method overcomes some of these problems. The
technique calculates the short-range electrostatic interactions
at every time step, while the long-range interactions are only
recalculated immediately after the nonbonded neighbor list
is recalculated.

The Ewald summation method112 offers a theoretically
rigorous approach to the evaluation of electrostatic interac-
tions in infinite periodic systems. While the original method
is not well suited to efficient calculations within biomolecular
MD simulations, more recent work113,114 has introduced
versions with improved computational complexity (N log N
complexity), and these are widely applied. Particularly for
systems with large periodic boxes and high dielectric
solvents, the artifacts observed in simulations with the Ewald

summation methods are insubstantial.115,116These methods
were demonstrated as being relatively efficient.

For systems that are naturally two dimensional, special
Ewald summation and particle mesh Ewald (PME) methods
can be applied.117,118 Such systems often include those in
the simulation of transmembrane proteins that are typically
simulated with periodicity in the plane of the membrane but
with a finite length perpendicular.

The fast multipole (FM) method also offers an efficient
way (computational complexity O(N)) to handle long-range
electrostatic interactions.114

An alternative to explicitly including all interactions in
an infinite system, as is done by the Ewald and FM methods,
but still considering those interactions unlike the spherical
truncation methods, is to use a reaction field.67, 96This seeks
to represent the surroundings by mimicking the response of
the dielectric medium beyond the cutoff distance or bound-
ary. While it is still an approximation, this gives stable and
accurate results.119,109

For nonperiodic systems, provided that they are large,
multipole expansion120 and multigrid methods121,122are both
efficient and useful.

3.5. Langevin Dynamics
Langevin dynamics incorporates stochastic terms to ap-

proximate the effects of degrees of freedom that are neglected
in the simulation. It is based on use of the Langevin equation
as an alternative to Newton’s second law. This equation
incorporates two additional terms. The first term is a
frictional, or damping, function that is intended to represent
the fictional drag experienced by solute molecules in a
solvent that is not explicitly simulated. The second additional
term is a random force that is applied to mimic the random
impulses that would be expected from both the solvent and
any coincident solute molecules. The Langevin equation for
the motion of an atom,i, is

whereFi(r) is the usual term used in conventional MD,ςi is
the friction coefficient, andRi(t) represents the random forces
experienced by the atom. The temperature of the simulated
system is maintained by a relationship betweenςi andRi(t)
(namely, the fluctuation-dissipation theorem). Whenςi )
0, Langevin dynamics is equivalent to conventional MD.
Whenςi > 0, the random impulses felt by the system can
assist in propagating barrier-crossing motions and, therefore,
Langevin dynamics can offer improved conformational
sampling characteristics over standard MD.

3.6. Brownian Dynamics
Brownian dynamics (BD) is a diffusional analogue of

molecular dynamics26,123,124carried out through the numerical
integration of the Langevin equation. When the solvent
surrounding a molecule has high effective viscosity, the
motion of that molecule can be described in terms of a
random walk since the damping effect of the solvent will
overcome any inertial effects. The Brownian dynamics
method seeks to simulate the random walk to produce a
representative diffusional trajectory. This is achieved by using
a very large friction coefficient,ςi, in the Langevin equation.
In the case that a process of interest is diffusion controlled,

mi
d2r

dt2
) Fi(r) - úi

dr
dt

+ Ri(t) (14)
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Brownian dynamics is a useful and widely applied approach
that is complementary to molecular dynamics. It is common,
but not essential, for proteins to be treated as rigid bodies in
BD simulations. As a result of the relative computational
requirements of Brownian dynamics methods compared to
molecular dynamics, time scales in the microsecond or
millisecond range are readily accessible.26

Examples of biological processes which are amenable to
study by Brownian dynamics include diffusion-controlled
reactions, diffusional encounters, and ionic diffusion under
the influence of an electrostatic field.

The choice of MD versus Langevin dynamics versus BD
needs to be carefully considered depending upon which
contributions are thought to dominate in the motion of
interest.

3.7. Monte Carlo
Structural and thermodynamic properties of a system can

be obtained through Monte Carlo (MC) simulations, thus
making these a significant alternative to molecular dynamics
simulations. Monte Carlo simulations are a stochastic ap-
proach to the task of generating a set of representative
configurations under given thermodynamic conditions such
as temperature and volume.

One attractive aspect of conventional MC simulations is
that only the potential energy is normally used in stepping
through configurations; no forces need evaluation, resulting
in more efficient calculations. Some biased MC approaches
do utilize force data, however.

In its simplest form, the Monte Carlo algorithm is a method
for numerical integration. A set of parameters are randomly
selected, or randomly perturbed, and a function of these
parameters is evaluated. The results of many such steps are
collated, and once sufficient sampling has occurred, the
probabilities of any given result occurring can be readily
assessed.

Metropolis et al.125 introduced a technique known as
Metropolis Monte Carlo simulation. In this scheme, the
problem is described in terms of a thermodynamic system
at potential energy,V, and temperature,T. With a constant
T, the initial configuration is perturbed and the change in
energy dV is computed. If the change in energy is negative,
the new configuration is accepted. If the change in energy
is positive, it is accepted with a probability given by a
Boltzmann factor. This process is iterated until sufficient
sampling statistics for the current temperatureT are achieved.
This procedure simplifies the calculation of the Boltzmann
average for any observable property since it is now just the
mean value of this property over all samples.

There are a number of issues that seriously hamper the
use of Monte Carlo simulations with large biomolecules.
Importantly, efficient moves are difficult to define for
macromolecules. That is, it is difficult to devise simple
structural perturbations that cause changes of a sufficiently
large magnitude but also avoid generating energetically
infeasible configurations. Some work has eased this issue
for proteins, however.126,127

Conventional MC methods are inefficient for exploring
the configurational space of large biomolecules when
compared to molecular dynamics.128 In addition, MC methods
give no information about the time evolution of structural
events. Hybrid MC/MD methods might resolve both of these
issues and are described in the literature.129-131 A conceptu-

ally related procedure, known as the relaxed complex
method, is discussed later in this review.

3.8. Simulated Annealing
Thesimulated annealingalgorithm132 is related to the MC

algorithm and forms an efficient technique to find the
minimum energy configuration of a system. The usual
Metropolis Monte Carlo algorithm is inefficient at sampling
configurations that are beyond high potential-energy barriers;
thus, it is only useful when starting at a configuration that is
already near the global energy minimum well. Simulated
annealing overcomes this problem by initially performing
Monte Carlo steps at a very high temperature. According to
a periodic schedule, this simulation temperature is decreased
at a logarithmic rate (or, sometimes, a linear rate) until the
temperature reaches zero. This procedure is widely used in
protein modeling or refinement applications. As with con-
ventional MC methods, no information about the time
evolution of structural events can be obtained.

The diffusion equation method (DEM) potential smoothing
method133,134(as discussed in Enhanced Sampling section of
this review) is an analytical equivalent to simulated anneal-
ing.135

Similar temperature scaling procedures utilizing MD
instead of MC for generating configurations are discussed
in the Enhanced Sampling section of this review, below.

3.9. Nondynamic Methods

3.9.1. Conformational Sampling

Numerous nondynamic methods besides MC and SA exist
for sampling available conformational space of proteins.136

CONCOORD137 is a method that does not generate a time
series of configurations. However, it does generate confor-
mations that satisfy a set of distance constraints. This is
different to the above algorithms since it does not rely on a
potential surface. The structures are obtained through purely
geometric considerations. This allows for some conforma-
tions that might never be found in an MD simulation or other
energy-based methods and is therefore complementary to the
dynamical simulation methods.

3.9.2. Principal Component Analysis

Principal component analysis (PCA) is a method that is
often used for reducing the dimensionality of a dataset. For
an arbitrary dataset where there is significant correlation
between the dimensions, or individual variables, the first
principal component is the linear combination of these
variables which gives the best-fit line through the entire
dataset. In other words, it is the linear combination which
describes the greatest amount of variance in the data. The
second and subsequent principal components are fit to the
residual variation remaining after the more significant
principal components are excluded. All principal components
are orthogonal.

The separation of functionally important motions from the
random thermal fluctuations of a protein is one of the
challenges of trajectory analysis. PCA of the covariance
matrix of the atomic coordinates is termed essential dynamics
(ED).138 This is a powerful method for extracting the
significant, large-scale, correlated motions occurring in a
simulation. In this sense, the principal components are the
orthogonal basis set for the trajectory’s atomic coordinates.
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The principal components corresponding to the greatest
variance can be projected onto the protein structure, either
individually or in sets. All other motions, including the
smaller thermal fluctuations, will be filtered out. This
facilitates visualization and appreciation of the major motions
that may be biologically relevant.139

3.10. QM/MM
Hybrid quantum mechanical/molecular mechanical (QM/

MM) methods140 have reached a viable state and are rapidly
gaining popularity.21,141

QM/MM methods are particularly useful since they allow
the study of biomolecular reaction mechanisms. This is a
task for which conventional MM is unsuitable owing to their
assumption that bonds are never made or broken. Conven-
tional QM methods are also unsuitable for this task owing
to their computational expense, making calculations on the
scale of entire solvated proteins currently intractable. QM/
MM methods are beyond the scope of this review but are
covered elsewhere in this issue.142

4. Free-Energy Calculations
The purpose of a MD simulation is often to derive kinetic

and thermodynamic data about the model system. Indeed,
many thermodynamic properties can be readily extracted
from sufficient sample configurations of a system. As an
example, the entropy of a system is directly related to the
number of different configurations that are thermally acces-
sible to it.17

One very important thermodynamic quantity is free energy,
a measure of the stability of a system. In particular, free
energy of binding is a measure of the stability of a complex,
a measure that is probably fundamental to all studies of
biomolecular binding processes.

Rigorous techniques, including the thermodynamic cycle-
perturbation method,143 exist for the estimation of free
energies from simulations. However, such calculations are
generally only practical for small or highly constrained
systems. Often the calculations are extremely expensive or
the level of sampling required for reliable statistics might
be beyond the feasible limits. Methods for speeding up free-
energy calculations are valuable.144 Recent methods for free
energy of binding estimation are briefly discussed below.

4.1. Free Energy of Binding
The interactions between proteins and other molecules are

critical to many biological systems and processes. Signal
transduction, metabolic regulation, enzyme cooperativity,
physiological response, and other processes are all dependent
upon noncovalent binding. These processes may be inves-
tigated through modeling and simulation, particularly as the
range of solved protein structures grows. Through MD, MC,
and the various related methods described in this review,
binding modes and the corresponding binding free energies6

may be estimated for protein-ligand and protein-protein
complexes.

Approaches available for estimating either relative or
absolute binding free energies cover a broad range of
accuracies and computational requirements. Free-energy
perturbation (FEP) and thermodynamic integration (TI)
methods are computationally expensive, but they have been
successfully applied in the prediction of the binding strengths
for complexes.5,145 Many more or less rigorous methods146

have been developed to estimate such free energies more
rapidly. These include the linear interaction energy (LIE)
method,147 the molecular mechanics/Poisson Boltzmann
surface area (MM/PBSA) method,148,149the chemical Monte
Carlo/molecular dynamics (CMC/MD) method,150,151 the
pictorial representation of free-energy components (PRO-
FEC) method,150,152 the one-window free-energy grid
(OWFEG) method,153,154 the λ-dynamics method,155,156and
the 4D-PMF method,157 among others.

MM/PBSA. The molecular mechanics Poisson-Boltz-
mann surface area (MM/PBSA) model is a so-called end-
point free-energy method; only the initial and final states of
the system are evaluated to estimate a free-energy change.
This compares to the more accurate FEP and TI methods
that require an equilibrium sampling of the entire transforma-
tion path, from an initial to a final state. End-point methods
are computationally efficient, and consequently, they are
widely discussed and applied in the literature. Despite their
simplicity, a connection between statistical thermodynamics
and various end-point free-energy models has been
derived.148,158-161 Certain limitations of MM/PBSA must be
considered, including the fact that there is no consideration
of specific water interactions, it is sensitive to the trajectory,
and it is sensitive to induced fit effects.

MM/PBSA149,162,163is basically a postprocessing method
to evaluate the standard free energies of molecules or the
binding free energies of molecular complexes in a relatively
computationally efficient manner.

The MM/PBSA method partitions the free energy into
molecular mechanical (MM) energies, continuum solvation
energies, and solute entropy terms as follows

where 〈Gmol〉 is the average standard free energy148 of the
molecule of interest, which can be the ligand, the receptor,
or their complex.〈GPBSA〉 is the molecular solvation free
energy. The solute’s entropy term may be estimated using a
number of methods.

The average molecular mechanical energy,〈EMM〉, is
typically defined as

whereEbond, Eangle, Etorsion, Evdw, andEelecare the bond, angle,
torsion, van der Waals, and electrostatics terms of intramo-
lecular energy, respectively.

The molecular solvation free energy can be further
decomposed to

where 〈GPB〉 is the average electrostatic contribution from
molecular solvation,γ is the surface tension of the solvent,
and A is the solvent-accessible surface area (SASA). The
electrostatic solvation free energy,GPB, can be calculated
using

whereN is the number of atoms in the molecule,qi is the
electrostatic charge of atomi, and φi

aq and φi
g are the

〈Gmol〉 ) 〈EMM〉 + 〈GPBSA〉 - T〈SMM〉 (15)

〈EMM〉 )
〈Ebond〉 + 〈Eangle〉 + 〈Etorsion〉 + 〈Evdw〉 + 〈Eelec〉 (16)

〈GPBSA〉 ) 〈GPB〉 + γ〈A〉 (17)

GPB ) ∑
i)1

N

[qi(φi
aq - φi

g)] (18)
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electrostatic potentials of atomi in the aqueous and gas
phase, respectively, which are usually obtained by solving
the Poisson-Boltzmann equation.164,165

4.2. Activated Molecular Dynamics
Many biological processes are intrinsically fast but, since

these processes occur infrequently, appear to have long time
scales. As an example, many reactions and conformational
transitions exhibit long time scales because they consist of
one or more activated processes. In fact, activated processes
such as local conformational changes associated with ligand
binding166 are widespread in biology. An activated process
is one in which a high-energy barrier exists between the
initial and final states and this barrier must be overcome.
The actual barrier crossing is often relatively rapid, but the
time required for the system’s random thermal fluctuations
to provide the constituent atoms with suitable momentum
can be long.

Conventional MD is unsuitable for investigating activated
processes in biology because the tractable simulation time
scales are of the order of nanoseconds while the biological
process might take milliseconds or longer. However, a
procedure known asactiVated molecular dynamicsmakes
the study of such processes possible provided that the primary
structural changes for the process are known beforehand.

Activated molecular dynamics is a two-stage process. First,
a series of simulations is performed. Each of these simula-
tions is constrained to a successive portion of the transition
pathway. The purpose of these simulations is to locate the
free-energy barrier peak. The second stage involves running
conventional simulations from the region of the free-energy
barrier. The resulting trajectories can be run in forward and
reverse to generate a set of representative barrier crossing
events. Analysis of these trajectories gives useful information
regarding the mechanism of the activated process.167

4.3. Steered Molecular Dynamics
Steered molecular dynamics (SMD) simulations introduce

a time-dependent or position-dependent force. The purpose
of this force is to steer systems along particular degrees of
freedom. This allows one to focus on dynamic events of
interest while keeping computational expense to a mini-
mum.168,169 For example, the external force could drive a
particular binding or unbinding event.

SMD offers scope for interactive steering in an immersive
3D environment. Implementations of such interactive envi-
ronments include one170 based on SIGMA171 and VMD172

and another based on NAMD and VMD that utilizes a haptic
feedback device.173

In many respects, SMD simulation is the computational
analogue of the experimental techniques which apply external
mechanical manipulations to biomolecules. These experi-
mental techniques include atomic force microscopy (AFM),174

optical tweezers,175 biomembrane force probes,176 and dy-
namic force spectroscopy177 experiments.

In the limit of weak forces that only slowly change in
direction, any induced structural change will be minor and
SMD will be equivalent to umbrella sampling. The results
of SMD simulations are, however, often more interesting
when this limit is violated significantly. Such conditions
would be disastrous to many applications of standard
molecular dynamics, including umbrella sampling itself and
also methods relying upon free-energy perturbation theory

and the weighted histogram analysis. Therefore, SMD might
be useful in cases where major structural changes will be
experienced and correspondingly major deviations from
equilibrium would occur. Examples of such nonequilibrium
cases include ligand unbinding and protein unfolding as
initiated by stretching of termini. Equilibrium descriptions
cannot be applied in the analysis of such simulations.
Therefore, the extraction of valid potentials of mean force
from SMD simulations is not straightforward, but several
approaches have been proposed.178-181 Free-energy differ-
ences can be obtained from the exponential averages of
irreversible work,182,183and this leads to the most promising
approach employed in extracting free-energy profiles from
SMD simulations.184,185

Jarzynski’s equation182,183relates equilibrium free-energy
differences and work done through nonequilibrium processes.
Consider a system described by a parameterλ and a process
that causes this parameter to evolve fromλ0 at time zero to
λt at timet. According to the second law of thermodynamics,
assuming the system is quasi-static, the average work done
on that system cannot be smaller than the difference between
free energies of the system corresponding toλ0 andλt

In other words, a nonequilibrium process provides only an
upper limit to the free-energy difference. Jarzynski182 pro-
posed an equality that is independent of the speed of the
process

where the average is over a set of trajectories of the
nonequilibrium process.

This equality has been validated both experimentally186

and through computational simulation.183 Thus, the equality
provides a method for calculating free energies from non-
equilibrium processes despite conventional thermodynamic
integration being invalid because∆F does not equate to〈W〉.
The major difficulty that remains, however, is that the
average of exponential term of Jarzynski’s equality is
dominated by trajectories corresponding to small values of
work. These trajectories are infrequent in the simulations,
leading to inadequate sampling. Currently, practical applica-
tion is limited to slow processes where the fluctuation of
work is comparable to the simulation temperature.184 Cou-
pling SMD to certain enhanced sampling techniques de-
scribed later in this review might extend this limit of
practicality.

A related technique is targeted MD in which a force that
is dependent upon the difference between the current
conformation and a target conformation. The aim is to drive
the evolution of the simulation toward the given target
conformation. Targeted MD has been applied in the predic-
tion of pathways between particular protein conformations187

and in protein folding.188

5. Recent Advances in the Theoretical Aspects of
Molecular Dynamics

5.1. Force Fields
The accuracy of the potential-energy function is of crucial

importance to the validity and stability of MD simulations
of proteins189,190and indeed all macromolecules. As indicated

∆F ) F(λ0) - F(λt) e 〈W〉 (19)

e-â∆F ) 〈e-âW〉 (20)

1600 Chemical Reviews, 2006, Vol. 106, No. 5 Adcock and McCammon



above, the form of the energy function must be simple in
order to make such computations tractable. It is also
important that derivatives are readily accessible to facilitate
efficient minimization and efficient integrators of motion.

Most force fields utilized in MD simulations of proteins
share a significant number of similarities. Harmonic terms
describe bond lengths and angles, Fourier series describe
torsions, and pairwise atomic interactions are described using
a Lennard-Jones function and a Coulombic function.
Usually, although not always, parameters are first obtained
for protein systems and subsequent parameters are derived
for nucleic acid, lipids, and other biological molecules in
such a way that they are consistent with the protein set. The
main differences between the various force fields result from
the diverse approaches taken to derive the individual
parameters. It is not unusual for the parameters to contain
significant interrelations and compensatory components such
that the final results within a full simulation system reproduce
desired experimental observables. Relatively innocuous
seeming differences in the way that different software
packages handle technical details in the simulation, such as
the treatment of long-range electrostatic effects or the
treatment of interactions between atoms bonded through a
small number of intermediate atoms, can lead to substantially
divergent energies with an alternative energy function. A
drawback of this is that parameters for a given atom type
cannot be compared between the force fields. The direct
transfer of parameters from one force field to another is,
generally, not valid.

The consistent-valence force field (CVFF)191 differs from
most of these force fields in the sense that it has a more
complex functional form. Most of the others differ only
through minor points such as how improper torsions (i.e.,
out of plane dihedral angles) are treated, what scaling factors
are used for nonbonded interactions, or whether hydrogen
bonds are included explicitly. The van der Waals parameters
of all of the force fields listed above were developed through
empirical fitting to small molecule model systems in liquid
or solid phases. As a result, the densities of solvated protein
systems tend to be close to reality. The torsional parameters
tend to be fit to a mixture of QM and empirical data. The
parametrization of template partial charges for the atoms in
residues is more challenging. The resultant electrostatic
interactions must be balanced with the particular water
models. A typical approach is to determine the gas-phase
partial charges through a QM calculation of a model
compound and to scale these calculated charges by a
somewhat justified multiplicative factor.

While it is not clear whether alanine tetrapeptide makes a
reasonable model system for proteins, a study of 20 different
protein force fields usingab initio quantum mechanical
calculations indicated that there were discrepancies in all of
these force fields.192 Furthermore, it was suggested that in
order to yield accurate electrostatics, the force fields would
need to incorporate non-atom-centered partial charges.

The AMBER95 force field193 for proteins is an example
of one of the several widely used force fields that are
developed alongside particular MD simulation software
packages. The accuracy of partial charges assigned to various
atoms in a protein structure is critical. Partial charges for
the AMBER force field were determined using the restrained
electrostatic potential (RESP) method.194,195This method fits
a quantum mechanically calculated electrostatic potential at
molecular surfaces using an atom-centered point charge

model. Subsequent studies were conducted to assess how
well the method performed in calculating conformational
energies, and it performed better than the other tested force
fields.196 RESP charges have been calculated for molecules
with a description of lone-pair donor sites and atom-centered
polarization.197 In this study the partial charges were
determined self-consistently from the charges and induced
dipoles to reproduce a quantum mechanical electrostatic
potential. In a separate study198 an automated systematic
search and genetic algorithm-based approach was applied
for parameter optimization. For both of these methods the
error in the conformational energy was lower than with the
older AMBER95 force field.

The general AMBER force field (GAFF)199 for organic
molecules is designed to be compatible with existing
AMBER force fields. It has parameters for most pharma-
ceutically relevant compounds and can be applied to a range
of molecules with an automated methodology. This makes
it suitable for applications such as rational drug design where
protein-ligand simulations are utilized and manually as-
signing appropriate parameters to all ligands is not practical.

In the CHARMM22 force field200 the atomic charges were
derived fromab initio quantum chemical calculations of the
interactions between model compounds and water molecules.

The majority of the bond length and bond angle parameters
of the OPLS-AA force field201 were extracted directly from
the AMBER95 force field. The torsional and nonbonded
parameters were instead derived using a combination ofab
initio molecular orbital calculations and Monte Carlo simula-
tions. A study using a similar set of parameters for amines
concluded that there is no need to consider polarizability.202

The OPLS-AA force field was further improved by rep-
arametrizing the torsional coefficients.203 The deviation in
the energy compared to those fromab initio calculations of
peptide was significantly reduced.

5.1.1. Polarizable Force Fields

One physical characteristic of molecular entities that is
currently avoided in contemporary MM force fields is the
effect of fluctuations in polarization.204,205 There are two
schools of thought on the matter. The first would suggest
that since force fields are freely parametrized, these param-
eters could be fixed such that the effects of polarization are
implicitly incorporated, at least in an approximate or average
sense. Others would argue, however, that standard empirical
force fields do not include any polarization terms and only
by explicitly including such terms would accurate reproduc-
tion of experimental observables be enabled.192 The hypo-
thetical polarizable force fields were for many years touted
as the “next-generation” of force field.192,206-208 To date the
most common methodologies for incorporating explicit
polarizability include induced dipole models209 and fluctuat-
ing charge models.210,211Unfortunately, the practical issues
involved along with uncertainties in the best way to ap-
proximate the physics have resulted in a distinct lack of
usable polarizable force field for proteins and other biomol-
ecules. Nonetheless, the simpler case of homogeneous liquids
such as water has yielded to the efforts of force field
developers.212-214 For example, in one study which found
increased accuracy in a water model with polarization
compared to simpler condensed phase models, charges and
dipoles were calculated by fitting toab initio potentials of
isolated molecules and additional polarizability parameters
were fitted to a range of potentials from applying electric
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fields to the molecules.215 A recently presented alternative
is based on the Drude oscillator.216-218

More recently, some attempts toward producing a usable
polarizable force field for proteins have produced some more
promising results. A fluctuating charge model for protein
has been demonstrated in a nanosecond time scale simula-
tion.219,220

A promising atomic multipole method221 is distributed with
the Tinker MD package222 (http://dasher.wustl.edu/tinker/).

5.2. Constant pH Molecular Dynamics
The protonation state of acidic and basic residues of a

protein along with the protonation state of any substrate will
be influenced by their interactions with the environment, their
internal interactions, and their mutual interactions.223 While
it is important to correctly assign protonation states, to run
realistic simulations, it is especially vital to estimate the most
favorable protonation states accurately in order to reliably
estimate the free energy of the system. Numerous non-MD
methods are available for estimating protonation states of
proteins.224-227

The general problem of allowing for protonations and
deprotonations of titratable residues during MD simulations
could be important for accurate representation of proteins
and has been examined.228-232 A number of procedures for
incorporating such events have been proposed.233 In some
of these methods, protons are added or removed in continu-
ous, nonintegral fashion. In other methods, the Poisson-
Boltzmann equation is used to gauge the correct protonation
state but not for the propagation of the MD trajectory.

Recently a method using physically realistic, integral
changes in protonation and consistent potentials for both
titration and propagation was presented.234 This approach
uses a generalized Born model for the aqueous solvent. To
ensure that surface groups on the solute protein exhibit proper
canonical configurational sampling, Langevin dynamics is
used to propagate the solute trajectories. The interdependence
of titration states and solute conformation is recognized by
use of periodic Monte Carlo sampling of the protonation
states of the titratable residues. In the Monte Carlo step, a
titratable site and protonation state are chosen at random,
and the transition energy is calculated using

wherekB is the Boltzmann constant,T is temperature, pH is
the specified solvent pH, pKa,ref is the pKa of the appropriate
reference compound,∆Gelec is the electrostatic component
of the transition energy calculated for the titratable group in
the protein, and∆Gelec,ref is the electrostatic component of
the transition energy for the reference compound, a solvated
dipeptide amino acid. The electrostatic portion of the
transition energy is determined by taking the difference
between the potential calculated with the charges for the
current protonation state and the potential calculated with
the charges for the proposed state. There is no need for
solvent equilibration because an implicit model is incorpo-
rated, so this is done in a single step. The equation can then
be used to calculate the total transition energy, as all other
terms are known. The total transition energy,∆Gelec, is used
as the basis for applying the Metropolis acceptance criterion
to determine whether this transition will be accepted. If the
transition is accepted, MD is continued with the titratable

group in the new protonation state. Otherwise, MD continues
without change to the protonation state. Applications of the
method to hen egg white lysozyme yielded agreement with
the experimental pKa to within plus or minus one unit for
most titratable sites. This is comparable to methods designed
specifically for pKa prediction.

5.3. Advanced Sampling Techniques
Sometimes one knows two biologically relevant but

distinct conformational states but knows little about the
necessary dynamic events of paths that convert one state into
the other. Sometimes one knows a single conformational
state, often a crystallographically determined structure but
also knows that there must be a conformational change to
provide a particular activity of interest. In many cases, the
time scales involved in the conformation changes are not
accessible via conventional MD techniques. To address this
issue, numerous accelerated MD variants are proposed in
the literature,235,236and the more recent advances are covered
here. These accelerated MD methods extend the conforma-
tional sampling characteristics, enabling extended time scales,
or effective time scales, to be accessed. These methods aim
to allow rare dynamic events to be observed more readily.

Accelerated MD methods can be grouped into three broad
classes. The first class alters sampling of conformational
space though explicit modification of the potential surface.
The second class also alters the sampling but by using non-
Boltzmann sampling to increase the probability of high-
energy states. The third class includes those methods that
enhance the sampling of certain degrees of freedom at the
expense of other, typically faster, degrees of freedom. There
is some overlap between these classes.

All of these accelerated MD approaches are distinct from
fundamental improvements in the core MD algorithm, such
as improved integrators and parallelism. These latter types
of enhancements are discussed elsewhere in this review.

The most interesting or promising enhanced sampling
methods are described in the following sections, but the
reader should note that this area is actively researched, and
further approaches are keenly anticipated. A separate group
of methods are those that apply some non-MD algorithm.
Although these are not actually MD methods, they are
relevant to the issue at hand and are therefore also discussed
here.

There are two primary goals driving development of
enhanced sampling methods. Some of these approaches aim
to increase the volume of conformational space that is
explored during the simulation, while others aim to drive
the system to a particular conformation or to the global
minimum energy conformation more rapidly.

5.3.1. Modified Potentials
The basic principle behind various potential-energy modi-

fication methods is to reduce the amount of time that the
simulated system remains in a local energy minimum well,
speeding the transitions from the region of one local
minimum to another, forcing the system to sample the
remainder of the available conformational space. In each of
these approaches, the potential-energy function is altered to
enhance sampling by reducing the propensity of energy wells
to act as conformational traps. Methods that modify the
potential-energy surface include the deflation method,237

conformational flooding,238,239 umbrella sampling,240 local
elevation,241 potential smoothing,135 puddle-skimming242,243

∆G ) kBT (pH - pKa,ref) ln 10 + ∆Gelec- ∆Gelec,ref

(21)
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and puddle-jumping method,244 hyperdynamics,245,246 and
accelerated MD.247

Another method is the well-studied diffusion equation
method (DEM),133-135,248-251 a type of potential smoothing.
In DEM, the diffusion equation is solved analytically for
the potential-energy surface, thus deforming and smoothing
it. A time-reversal process is used to restore the potential to
its original form as the simulation proceeds.

The smoothing or flattening of the potential-energy
landscape can be applied either globally to increase the
overall sampling or only along a specific, predefined, reaction
coordinate to enhance the conformational evolution along
the direction of a desirable transformation or enhance
sampling over a particular set of conformations, depending
upon the method. For example, given some prior information
about the desired conformations, one widely used approach
is umbrella sampling.240 A compensating function, known
as an umbrella potential, is added to the potential-energy
function to bias the sampling. Obviously, construction of the
umbrella function requires prior knowledge of the conforma-
tions of interest. Nonetheless, umbrella sampling is a
powerful alternative to adiabatic mapping. In umbrella
sampling, local strain may be relaxed more effectively and
kinetic effects can be included to some extent. Importantly,
some deviations from any specified conformational path can
be tolerated.

In principle, these schemes are all applicable to methods
other than MD. They can be used for enhancing sampling
by MC simulations, for example.

The local elevation method241 enhances sampling by
adding a penalty potential to any conformations previously
sampled. This resembles the widely used tabu search
algorithm in that a list of previous solutions is maintained
and new solutions are driven away from solutions existing
in this list. This approach has not been adapted for use with
proteins. It is likely that the storage overhead for configura-
tions of such large molecules would be overwhelming.

Another approach that aims to force systems out of their
sampled local minima is conformational flooding.238,239 In
conformational flooding the initial state of the system is
destabilized by adding an extra unfavorable potential at this
initial state. This method predicts the so-called essential
degrees of freedom using PCA, described earlier. A Gaussian
potential is added to the system to force it along these
essential degrees of freedom. Unlike local elevation, this
method has been demonstrated in protein simulations.

Hyperdynamics and Accelerated MD. The recently
describedaccelerated molecular dynamics247 allows for more
rapid sampling of the configurational space in systems with
rough energy landscapes and also allows one to calculate
the correct thermodynamic properties of the system. It
resembles the puddle-skimming method243 except that its
formulation avoids nonsmooth potential-energy surfaces that
cause significant problems in MD simulations. In addition,
the puddle-skimming method results in random sampling on
a flat energy landscape in the regions of the minima where
sampling becomes very inefficient.

In the accelerated MD method, time becomes a statistical
quantity in the simulation. The effective time scale of
simulations is increased by several orders of magnitude at
the expense of sampling around the energy minima. Because
the potential is altered analytically, the statistics of sampled
configurations can be corrected to reproduce the canonical
probability distribution for the original potential surface.

The original potential functionV(r) is altered via

where∆V(r) has a nonnegative value as given by

The modified potential echoes the original potential, so
sampling directions during the simulation are still representa-
tive of the unbiased system. Thus, the random-sampling
behavior of puddle skimming in the regions of the original
minima is not observed.

When applied the to the dihedral angle term and the 1-4
term of the Amber potential, in a Langevin dynamics
simulation using the GB implicit solvent model, substantial
increases in configuration sampling could be obtained. Also,
after applying a correction for the sampling bias, the method
yielded the expected distribution of configurations for small
peptides.247

5.3.2. Modified Sampling
The basic principle behind most of the second class of

methods is also to reduce the amount of time that the
simulated system remains in local energy minimum wells,
forcing the system to sample the remainder of the confor-
mational space available. However, these techniques use
alternative methods for sampling rather than performing
conventional MD on explicitly modified energy landscapes.
One obvious approach is simulated annealing (SA), as
described earlier, which effectively smoothes a potential-
energy surface through additional entropic contributions.132

It can be shown that SA is the stochastic equivalent of the
DEM method discussed above, and the relationships between
these methods have been investigated.135

Modified sampling methods include high-temperature
MD,252 locally enhanced sampling (LES),253-256 replica
exchange,257,258parallel tempering,259,260self-guided MD,261

targeted MD,187 milestoning,262,263 repeated annealing,264

additional degrees of freedom,265,266and various non-Boltz-
mann sampling methods.267,268

Locally Enhanced Sampling.In the LES method253,256a
fragment of the system, maybe a side chain or a ligand
molecule, is duplicated so that the simulation containsN
noninteracting copies of that fragment. The remainder of the
system experiences each fragment through interactions that
are reduced by a factor of 1/N from their original magnitudes.
This use of multiple copies and the reduction of the
interaction potentials significantly enhances the sampling of
the conformations of the fragments.

Evaluating the free energy from LES simulations requires
two additional perturbation calculations: one in transforming
from the single-copy representation of the reference state to
the multiple-copy representation and a second in transforming
from the multiple-copy representation of the perturbed state
into the single-copy representation. However, the benefits
of adopting a multiple-copy representation outweigh the
additional costs of introducing two more perturbation
calculations.269 This method has been applied to the study
of R f â anomerization of glucose, and it was found that
the free-energy calculations converged an order of magnitude
quicker than with the single-copy method.270

V′(r) ) {V(r) V(r) g E
V(r) + ∆V(r) V(r) < E

(22)

∆V(r) )
(E - V(r))2

R + (E - V(r))
(23)
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High-Temperature Molecular Dynamics. Perhaps the
most obvious approach for enhancing sampling of high-
energy states is to raise the simulation temperature. This
approach is known as high-temperature dynamics and has
been evaluated by several groups.252,271,272It is suggested that
high-temperature molecular dynamics is a useful aid in
conformational searches, but physiologically relevant low-
energy structures are not generally obtained even after
minimization of the generated high-energy structures. Indeed,
the generated structures often have an infeasible proportion
of cis-peptides.252 Consequently, this method is not without
criticism. Another possibly major issue is that MM force
fields, generally, have not been designed for, or validated
with, temperatures much beyond the physiologically relevant
300-330 K that most MD simulations are run at. Whether
or not the force field is physically correct, there may be
debate about whether the use of such high temperatures leads
to appropriate sampling characteristics since the entropic
contribution to the free energy is significantly enhanced (and
therefore over-sampled).238 Although there are several prob-
lematic issues involved with using high temperatures to
accelerate MD simulations, the basic principle acts as the
fundamental basis for a few more complex approaches
discussed below.

Multiple-Copy Dynamics. Several approaches that use a
series of simultaneous (or parallel) MD simulations are
demonstrated in the literature.255,256,273-276 In these individual
molecules in the separate simulations may, or may not,
interact in some way. Similar approaches may be applied in
simulated annealing.277

One interesting multiple-copy approach is SWARM-
MD.256 The basic idea behind SWARM-MD was motivated
by the efficient search behavior observed of swarms of social
insects. Despite the absence of any higher intelligence, whole
swarms of insects often appear to exhibit significant orga-
nization and planning. The cooperative rules that lead to the
swarm’s overall behavior is mimicked for conformational
search in a simulated swarm of molecules. In such simula-
tions, each molecule is subject to supplementary artificial
forces to introduce the cooperative behavior. The artificial
force drives the trajectory of each molecule toward the mean
trajectory of the entire swarm.

It would be easy to conceive a scheme in which each
molecule is driven away from the mean trajectory in order
to enhance the volume of conformational space that would
be sampled.

Multiple-copy approaches tend to be very well suited to
trivial parallelization with communication only between the
individual systems. Indeed, the well-known distributed
protein-folding project, Folding@Home, uses a multiple-copy
approach.278

A number of multiple-copy approaches specific to ligand
binding or design have been introduced,275,279,280and these
are discussed further in the MD for Ligand Docking section,
below.

Replica Exchange Molecular Dynamics.Like the multiple-
copy approaches, replica exchange molecular dynamics
(REMD)281 and the closely related parallel tempering method260

utilize a series of simultaneous and noninteracting simula-
tions, known as replicas. With proteins, these simulations
are typically MD, but earlier work applied Monte Carlo
simulations. The replicas are simulated over a range of
temperatures, and at particular intervals the temperatures of
these simulations may be swapped (i.e., replicas are ex-

changed). The methods differ, however, in the way the
individual simulations are coupled. Usually these replicas
may exchange temperatures according to Monte Carlo-like
transition probability. Such exchanges occur through a simple
swapping of the simulation temperatures via velocity re-
assignment. The high-temperature replicas jump from basin
to basin, but the low-temperature replicas explore a single
valley with sampling characteristics just like conventional
MD.

While REMD is widely applied to smaller molecules,
particularly in peptide and protein folding experiments,282-284

it is found to be extremely computationally expensive when
applied to large proteins.

In a study in which REMD was applied to a 20-residue
peptide it was found that at physiologically relevant tem-
peratures the conformational space was sampled much more
efficiently than it was with conventional constant temperature
MD284 and with similar thermodynamic properties.

Self-Guided Molecular Dynamics.Self-guided molecular
dynamics (SGMD)261,285,286 applies an additional guiding
force to drive the simulation. The guiding force is a
continuously updated time average of the force of the current
simulation, leading to increased search efficiency by assisting
the system over energy barriers. For efficient sampling of
the available conformational space, the correlation between
the guiding forces and the actual physical forces must be
low;287 nonetheless, the algorithm produces stable dynam-
ics.286

A related method, the momentum-enhanced hybrid Monte
Carlo method (MEHMC)288 overcomes some of the inherent
problems observed with SGMD. The SGMD algorithm lacks
reversibility because the effective potential-energy landscape
is a function of the trajectory rather than a function of the
coordinates. This irreversibility results in substantial errors
in canonical averages from the trajectory. MEHMC differs
by using average momentum instead of average force to bias
the initial momentum within a hybrid MD/Monte Carlo
procedure. This is believed to yield correct canonical
averages.288

5.3.3. Modified Dynamics

This third class of enhanced sampling method encompasses
those methods in which the dynamics along the “slow”
degrees of freedom are accentuated relative to the “fast”
degrees of freedom. One such method is extremely widely
used, to the extent that simulations not applying it (or one
of its close descendants) are exceptionally rare. This is the
SHAKE algorithm,71 where constraints are applied to par-
ticular bond lengths to allow larger time steps to be taken
without encountering excessive forces. SHAKE was de-
scribed earlier in this review. Another method is the MBO-
(N)D algorithm289 in which groups of atoms are partitioned
into substructures that are considered to be rigid during the
simulation. It is possible to integrate the equations of motion
faster by separating the faster components of the dynamic
propagator from the slower components.290 Alternatively, the
faster (i.e., higher-frequency) motions may be reduced or
eliminated completely. Several algorithms based on this
principle exist including dynamic integration within a sub-
space of low-frequency eigenvectors,291 generalized moment
expansion,292 various types of coarse-grained modeling293,294

such as network models,295 mode coupling theory and
projection of a generalized Langevin equation onto certain
degrees of freedom,296 digital filtering of selected veloci-
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ties,297-299 large time-step dynamics using stochastic ac-
tion,300,301and leap dynamics.302

Gaussian Network Model. A large number of coarse-
grained models for proteins have been described in the
literature. The Gaussian network model293,303-305 is one such
coarse-grained method in which the energy function evaluates
the system at the level of residues rather than atoms or in
some cases even more coarse fragments.306 The residues
interact through simple harmonic and nonharmonic terms.
This model has been widely applied in MD of proteins.307,308

This simplified model has been reduced further, even to
the point where sequence information is not considered.309

In addition, sampling has been further enhanced through
amplification of slower motions310 and coupled to conven-
tional MD to assist sampling.311

Leap Dynamics. In the leap-dynamics302 method a
combination of MD and essential dynamics is applied.
Conformational “leaps” applied to the system force it over
energy barriers. The structures from the leaping process are
refined using MD. The method was demonstrated to correctly
predict the enhanced partial flexibility of a mutant structure
in comparison to native bovine pancreatic trypsin inhibitor.

A potentially significant disadvantage of many of these
modified dynamics methods is that the dynamics are, of
course, artificial. This may, or may not, be a problem
depending upon the desired application of the results. Some
methods might still be anticipated to yield a Boltzmann
distribution of structures if run for a sufficiently large number
of steps, but there can be no such guarantees for others.

Digitally Filtered Molecular Dynamics. Digitally filtered
molecular dynamics (DFMD) applies the theory of digital
filters to MD simulations, selectively enhancing or suppress-
ing motions on the basis of frequency.312 This method was
applied to the Syrian hamster prion protein, and a high degree
of selectivity and control was demonstrated in the enhance-
ment of the rate of conformational changes.298 A time
reversible version of the method has also been developed.299

Multiple Time-Step Methods. A number of multiple
time-step methods are available313 with the reference system
propagation algorithm (RESPA)314-316 being most widely
applied to biomolecular systems.317,318 A reasonable MD
trajectory may be generated at 35-50% of the usual
computational expense. Coupled with the Langevin methods
described above, speed ups of as much as 2 orders of
magnitude have been reported for protein simulations.319

The basic concept in multiple time-step methods is to
separate the slow motions from the fast motions and evaluate
the interactions relating to the slow motions less frequently.
One common assumption in such methods is that interactions
involving longer distances change more slowly, and there-
fore, the forces due to those interactions can be reapplied
over several time steps before being recalculated.

Multiple-Body O(N) Dynamics. Multiple-body O(N)
dynamics (MBO(N)D)289 is a molecular dynamics technique
using a coarse-grained model that scales linearly with the
number of bodies in the system. Speed ups of 5-30 times
compared to conventional MD are claimed.320 This method
combines rigid-body dynamics with multiple time steps. The
highest frequency harmonic motions are removed while
retaining the low-frequency anharmonic motions. It has been
demonstrated to reproduce the global essential dynamic
properties of both proteins and nucleic acid systems.289 One
notable problem with this otherwise extremely promising
method is that it relies upon the user to determine the level

of granularity from an empirical study of such levels for the
system of interest.

6. Recent Advances in the Computational
Aspects of Molecular Dynamics

The practical application of molecular dynamics is fuelled,
in part, by the wide availability of software and the growing
availability of significant computational resources.

6.1. Software
There is a considerable amount of diversity in the software

packages that may be chosen today. While many molecular
dynamics packages aim to have a broad or comprehensive
range of capabilities, each widely used package does have
certain features or advantages that set it apart from the others.
Few research groups restrict their simulations to a single
software package. This encourages development of compat-
ibility-oriented features and uniform benchmarks, although
there is still much scope for improvement in these areas.
The majority of popular MD packages can utilize force field,
structure, and trajectory file formats that were originally
introduced in other packages. This enables a certain amount
of validation and facilitates reproduction of published results,
even without the original software, an exigency for some
areas of computational chemistry.

Many of the general-purpose protein modeling packages
contain some kind of MD facility, although in many cases
this is nothing more than an interface to one of the specialized
MD software packages. Such interfaces are useful in
themselves as they can provide a simple mechanism for
invoking the simulations without an understanding of the
underlying, and often complex, software. They, therefore,
allow the nonspecialist to readily perform simple simulations.

Taking the authors’ research group as an example,
GROMACS, AMBER, and NAMD are all routinely used
on a regular basis for MD studies as warranted by the specific
aims or requirements of the current project. In addition,
CHARMM, NWChem,321,322and others are used when the
situation demands.

While it might be argued by some that such a broad base
of actively developed software fractures the field and wastes
a lot of effort through duplication, it in fact fosters a great
deal of friendly competition. Such competition is a sign of
a healthy worldwide research effort. Other reasons, such as
the independent validation or verification of theories, should
not be understated either. As MD approaches and methods
pass from the province of specialized experts into the wider
realm of scientists, particular software packages can offer
important advantages or accommodate particular needs of
the diverse set of potential users.

6.1.1. GROMACS

GROMACS323,324(http://www.gromacs.org/) is advertised
as a versatile package which is primarily designed to perform
molecular dynamics simulations of biochemical molecules
such as proteins and lipids. However, it is also claimed that
since GROMACS is extremely fast at calculating the
nonbonded interactions that typically dominate simulations,
many groups are also using it for research on nonbiological
systems such as polymers. GROMACS was initially a
rewrite of the GROMOS325 package (http://www.igc.ethz.ch/
gromos/), which itself, like AMBER, was originally derived
from an early version of CHARMM.
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The main advantages of GROMACS are its ease of use
and its exceptional performance on standard personal com-
puters. A lot of effort was expended in optimizing the code
to run efficiently on desktop computers such as those using
the Intel Pentium IV and PowerPC G4 processors. The
authors report that it is normally between 3 and 10 times
faster than other MD programs.

One factor that many users might find attractive is its lack
of a scripting engine. GROMACS is actually a suite of small
command-line programs each with a simple set of options.

GROMACS file formats are somewhat interesting. All files
are plain-text based, so they are, in principle, human readable.
This helps them avoid the platform dependence malediction
of many MD packages. These plain-text formats result in
much larger file sizes than binary formats would, so
GROMACS transparently utilizes standard UNIX compres-
sion tools. In addition, trajectories may be stored in a very
condensed form using lossy compression. Lossy compression
describes a class of data compression algorithms that achieve
impressive reductions in data size by only approximating
the original data. While some fidelity is lost, it generally
has little practical consequence much like the lossy compres-
sion used in the well-known JPEG image format.

Most of the standard types of data analysis can be
performed using the set of accompanying tools which can
also produce publication-ready plots in a straightforward
manner.

From a practical point-of-view, one particularly attractive
reason to choose GROMACS is the fact that it is distributed
as free software under the terms of the GNU General Public
license (http://www.gnu.org/). This provides certain freedoms
and significant pedagogical benefits. Source code is generally
available (at least for academic groups) for all major MD
packages, but the use and reuse of such code is often highly
restricted.

6.1.2. NAMD

Whereas GROMACS is renowned for its spectacular
performance on modest desktop computers, NAMD326 (http://
www.ks.uiuc.edu/Research/namd/) exhibits inspiring perfor-
mance on high-end parallel computing platforms with large
numbers of processors.327 NAMD is able to comfortably
handle system sizes which are well beyond the practical, if
not absolute, limits of other MD packages. For instance,
NAMD was used in the simulation of a 200 000 atom lac
repressor system.328 Such huge biological systems are
simulated on massively parallel supercomputers and Be-
owulf-style clusters. NAMD scales to (i.e., runs efficiently
on) large numbers, even thousands, of processors impres-
sively.329 Until the recent development of PMEMD330 no
other MD software came close on this point.

Besides its efficiency, another advantageous property is
the level of integration with the VMD molecular visualization
software.172 This facilitates interactive molecular dynamics,
for example.331

One specific factor that probably contributes to its ef-
ficiency is that its feature set is relatively modest compared
to the other major MD packages. However, NAMD is file
compatible with packages such as AMBER and CHARMM,
so system preparation and the postprocessing and analysis
of results are often performed using other software.

NAMD is distributed free of charge, with full source code,
but certain conditions on use apply. Its object-oriented design

implemented using the C++ programming language332

facilitates pedagogical use and the incorporation of new
algorithms.

6.1.3. AMBER

Two of the more established and respected MD packages
are CHARMM and AMBER333 (http://amber.scripps.edu/).
While the respective developers can trace the programs
heritage to a common source, they have been independently
developed since the early 1980s and adopted slightly different
philosophies. AMBER consists of a suite of separate
programs, each performing a specific task. The CHARMM
developers have taken a more integrated approach where one
single and monolithic application does everything from
system preparation through simulation to analysis. There are
inherent benefits to each approach, but the overall merit,
more or less, comes down to personal preference.

AMBER was principally maintained in the research group
of the late Professor Peter Kollman, and ongoing maintenance
is now coordinated in the research group of Professor David
Case. Code contributions came from a variety of locations,
however. Along with CHARMM, it often incorporates new
methodologies and algorithms before any other packages.

A recent addition to the AMBER suite334 is PMEMD, a
stripped-down and optimized version of the general MD
program known as Sander. PMEMD provides scaling on
massively parallel platforms that is comparable with NAMD.

The simulations executed using PMEMD are intended to
replicate AMBER’s Sander calculations within the limits of
computational precision. However, the computation is per-
formed much more quickly, in roughly one-half of the
memory, and with significantly less overhead on larger
numbers of processors. A number of benchmark cases are
presented on the PMEMD website (http://amber.scripps.edu/
pmemd-get.html).

Like CHARMM, a series of force fields are developed in
conjunction with the AMBER simulation software.189,335

6.1.4. CHARMM

CHARMM (Chemistry at HARvard Molecular Mechanics)
is described as a program for macromolecular simulations,
including energy minimization, molecular dynamics, and
Monte Carlo simulations.39-41 It is predominantly developed
within the research group of Professor Karplus at Harvard
University, although, as highlighted on the CHARMM
website (http://yuri.harvard.edu/), a network of developers
in the United States and elsewhere actively contribute to its
ongoing development. The CHARMM software is developed
in unison with a series of force fields, as described above.

A variant of CHARMM, named CHARMm, is widely
deployed in commercial settings. While it lacks some of the
more cutting-edge features, it is arguably more robust and
bug free. Commercial support is provided by Accelrys (http://
www.accelrys.com/support/life/charmm/).

6.2. Hardware
The great strides made in the molecular dynamics field

are due in part to the phenomenal developments in computer
hardware. Protein simulations make heavy demands on the
available computing facilities. The length and accuracy of
simulations is chiefly restricted by the availability of proces-
sor power, while memory and disk space are also important,
especially for large model systems. The most significant
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developments in computational infrastructure with applica-
bility to MD are briefly discussed here with details of this
applicability.

6.2.1. Parallel Computing

The most powerful supercomputers available today consist
of arrays of processors that communicate via fast intercon-
nects. The potential power of these systems is only utilized
when the algorithm to be run can be partitioned into a number
of separate processes that can individually be run on a single
processor. With no or minimal communication required
between the processes, the bandwidth of the interconnects
will not become the bottleneck in the calculation. In addition,
if the processes do not need to remain synchronized, then
processing power will not be wasted as one of the processes
waits for others to catch up. While this might be the case
for many computational tasks, it is not for typical MD
algorithms. Particularly in the case of nonbonded interactions,
significant communication is required and the processes will
need to be synchronized during each time step.

Blue Gene.Blue Gene336 is a widely publicized project,
with an ultimate goal of implementing and utilizing a so-
called hugely parallel supercomputer architecture.

IBM’s Blue Gene Project. (http://researchweb.watson.
ibm.com/bluegene/index.html) is described as representing
a unique opportunity to explore novel research into a number
of areas, notably including biomolecular simulation. The
planned scientific program will require and foster a col-
laborative effort across many disciplines and the participation
of the worldwide scientific community to make best use of
this exciting computational resource.

Commodity Clusters. The availability of Beowulf-style
clusters built from commodity PC components is being
increasingly leveraged, as a cost-effective alternative to
traditional supercomputer platforms, to facilitate large-scale
MD simulations. There is one caveat, however. The technical
characteristics of typical clusters do not suit them to fully
efficient MD simulations as detailed in the Future Prospects
and Challenges section. Clusters are suitable for running
many simulations in parallel, with minimal communication
between the processing nodes and therefore maintaining
much of the efficiency of the serial codes. Some types of
simulation, including the relaxed complex method, are highly
suited to clusters.

7. Recent Applications of Molecular Dynamics
There have been numerous and varied simulations de-

scribed in the literature. As MD approaches the point in its
development at which it becomes a routine tool for nonspe-
cialist researchers, such simulations will only increase in
frequency. It is impossible to give a broad overview that
will do justice to any of these simulations. Consequently, a
tiny set of recent examples driven by simulations of
biomolecules is selected here for brief discussion.

7.1. Functional Mechanism of GroEL
In the highly concentrated milieu of the cell, chaperone

molecules are essential to facilitate the correct folding of
many proteins. For example, inEscherichia coliit is thought
that around 10% of proteins located in the cytoplasm require
an experimentally well-characterized protein, chaperonin
GroEL, for correct folding. This protein is a homomeric
complex of 14 subunits arranged in two heptagonal rings.337

Critical to its function are large conformational changes that
are regulated through cooperative binding and hydrolysis of
ATP in the presence of a chaperonin GroES. This cooper-
ativity is positive in a given ring but negative between the
rings. The conformational changes occur in all subunits,
converting them from a “closed” form to an “open” form
upon binding of ATP and GroES.

It was impossible to determine the conformational pathway
between the open and closed forms experimentally. It is
believed that this conformational transition occurs on a
millisecond time scale, so conventional MD of this transition
would not be tractable. However, targeted MD is applicable
in such cases and was applied to determine the transition
pathway between the two known conformations.338 The
targeted MD simulation predicts a particular intermediate
conformation with ATP bound before GroES. It was also
indicated that steric interactions along with salt bridges
between the individual subunits mediate the pattern of
positive and negative cooperativity of the ATP binding and
hydrolysis. It is seen that early in the pathway ATP binding
triggers a downward motion of a small intermediate domain,
and this causes the larger motion of the apical and equatorial
domains. Subsequent cryoelectron microscopy results support
the results of the simulation, indicating that this intermediate
domain plays a critical role in the conformational behavior.339

7.2. Simulation of Membrane Proteins
An active area where simulations play a key role is the

study of ion diffusion through pores and channels and the
gating mechanisms associated with such channels, topics that
are frequently reviewed.25,340-342 Experimentally probing the
structure of transmembrane proteins is difficult, but valuable
insights have been obtained through the application of MD
in cases where a reasonable structure is known or can be
predicted. One system that has been widely simulated is the
M2 protein of influenza A. During a 4 ns MDsimulation a
funnel-like structure formed, but it appeared to be occluded
by a particular histidine residue,343 while it has also been
shown that the protonation of this residue can drive channel
opening.344 Both of these predictions have been validated
by NMR results. This transmembrane protein fragment has
been used as the basis of a number of model ion channels
for various viral proteins.340

7.3. Molecular Dynamics for Docking and Ligand
Design

The interactions between proteins and substrates are critical
to many biological systems and processes. Signal transduc-
tion, metabolic regulation, enzyme cooperativity, physiologi-
cal response, and other processes are all dependent upon
noncovalent binding. These processes may be investigated
through modeling and simulation, particularly as the range
of solved protein structures grows. Through MD, MC, and
the various related methods described in this review, binding
modes and the corresponding binding free energies may be
estimated for protein-ligand29 and protein-protein345 com-
plexes.

Ligand docking is the prediction of protein-ligand
complexes; the use of MD is widespread in such ligand-
docking studies.346,347Most ligand-docking methods are MM-
based; however, the present discussion is limited to methods
that actually use MD rather than just using MM-based
scoring functions.
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When calculating free energy of binding estimates there
is a necessary balance to be found between the accuracy or
reliability of these estimates and the computational cost of
the calculations. It is not always essential to determine highly
accurate binding constants for productive studies in drug
design.

At the upper end of the accuracy versus computational
speed, one factor that becomes crucial is that the ligand-
binding process can lead to conformational changes in the
receptor protein itself. These changes could be necessary for
the receptor to accommodate the bound ligand. While it is
important to explore the conformational space available to
the receptor (i.e., the protein) molecule, it is often difficult
to predict or represent the plasticity of the binding site.348

This is particularly important when there may be multiple,
allosterically connected, binding sites. While many ap-
proaches are available for considering such flexibility,349-351

it is suggested that the use of multiple protein structures in
the docking process is a wise approach to the task. One
simple approach to generate such multiple structures is
through the use of MD352,353with standard “static” docking
to a series of individual snapshots from the simulation
trajectory. It may be tempting to use MD as the docking
search method, but during reasonable simulation times the
system is likely to be stuck in local minima, with energy
barriers of more than 1-2 kT unlikely to be overcome. With
some modification of the potential function to smooth the
energy surface and allow further exploration of receptor
conformations such simulations can become practical.354,355

By coupling different degrees of freedom of the system to
different temperatures, the system can be assisted in escaping
local minima by varying temperatures that specifically
mediate the flexibility of the ligand.356,357 The concept of
varying temperatures to enhance sampling for docking
simulations is commonly applied in the guise of simulated
annealing MD.358

7.3.1. Advanced Molecular Dynamics-Based Methods for
Drug Discovery

It has been shown that in a study of different search
algorithms, an MD-based method was the most efficient
approach for large search spaces and produced the lowest
(i.e., best) mean energies for the docked conformations.359,360

Further docking methods based around MD have been
proposed. The dynamic pharmacophore method361 and the
relaxed complex method362,363 are both designed to take
receptor flexibility into account in the analysis of ligand-
receptor binding. These are described below.

SGMD, as described earlier, would probably be suited to
investigation of protein-ligand systems. This was applied
to a host-guest system,364 but no study for protein-ligand
systems has been reported to date.

The main impediment to the use of MD in docking studies
remains the computational cost of running suitably long
simulations. Approaches using only short MD simulations
have been shown to improve the performance of docking
procedures versus methods using static structures, in certain
cases.365

The filling potential method366 is an MD-based approach
for estimating free-energy surfaces for protein-ligand dock-
ing. This is a modified umbrella potential sampling method
which enables the ligand molecule to drift out of local
minima through a self-avoiding (via a tabu list) random walk

consisting of an iterative cycle of local-minimum searches
and transition-state searches.

Another interesting flexible docking method relies on
calculation of the flexible degrees of freedom using MD
simulations.367 This approach allows relaxation of the protein
conformation in precalculated soft flexible degrees of
freedom. These soft flexible modes are extracted as principal
components of motion from a conventional MD simulation.

MD is also widely used in the refinement of docked
conformations from the results of approximate, generally
rigid-body, ligand docking. For example, a three-stage
method has been presented.368 A grid-based method is used
to sample the conformations of an unbound ligand in the
first stage. Next, the lowest energy ligand conformers are
rigidly docked into the binding site. The docked modes are
refined in the third stage by molecular mechanics minimiza-
tion, conformational scanning at the binding site, and a short
period of MD-based simulated annealing. This procedure was
applied to ligand-protein complexes with as many as 16
rotatable bonds in the ligand with final root-mean-square
deviations ranging from 0.64 to 2.01 Å compared to the
crystal structures.

Taking this refinement a stage further, a combined
quantum mechanical/molecular mechanical (QM/MM) dock-
ing method is described.369 In this method AutoDock370 is
used to generate initial starting points for the docked
structures, semiempirical AM1 QM/MM optimization of the
complex gives an improved description of the binding mode,
and the electronic properties of the ligand within the
environment of a flexible protein to simulate the limited
structural changes of the enzyme upon ligand binding. This
method was able to reproduce the induced fit structural
changes when a simple optimization was adequate for
reproducing the protein’s movement.

Multiple-Copy Simultaneous Search. Multiple-copy
simultaneous search is a method for determining locations
of favorable binding for functional groups to the surface of
a protein.275,371A few thousand copies of a functional group
are randomly placed at the protein surface and then subjected
to simultaneous energy minimization and/or quenched mo-
lecular dynamics. The resulting locations of the functional
group yield a functionality map of the protein receptor site,
which included consideration of its flexibility. A set of these
functionality maps can be used for the analysis of protein-
ligand interactions and rational drug design.280

Locally Enhanced Sampling.In LES a fragment of the
system exists as several copies in the same simulation, as
described above. The individual copies do not interact with
each other but do interact with the environment. In the case
that the fragment is a ligand, LES becomes a method for
sampling ligand conformations under the influence of a
protein.372

Dynamic Pharmacophore Method.The dynamic phar-
macophore method351,361,373requires a set of instantaneous
snapshots of the fluctuating receptor molecule. These snap-
shots are typically extracted from MD simulations, although
structures that are consistent with NMR data or other sources
might be used instead. Probes corresponding to fundamental
functional groups (e.g., methyl, hydroxyl, phenyl) are docked
to each snapshot with the aim of detecting consensus patterns
for the whole ensemble of snapshots.

Generally, receptor-based pharmacophore models are
developed using a single receptor structure. These pharma-
cophore models based on one receptor structure could fail
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to identify inhibitors that bind to structures that are somewhat
different from the experimental or model structure but that
are still readily accessible at physiological temperatures. The
dynamic pharmacophore model was developed to address
this issue.

For each snapshot from an MD simulation, a pharma-
cophore model was constructed by identifying favorable
binding sites of chemical functional groups using the
multiunit search for interacting conformers (MUSIC) pro-
cedure of the BOSS program.374 This identifies favorable
binding sites of probe molecules by simultaneously refining
the energy of a large number of probe molecules, which do
not interact with each other, in the potential field of the
receptor molecule. Strong binding sites tend to cluster many
probe molecules in well-defined orientations and locations.
Thus, strong binding sites can be selected as those which
consistently appear in many snapshots rather than a few
snapshots. These sites are used to form the important
components in a pharmacophore model. This approach also
uncovers useful binding sites that might not be readily
recognized as such in the initial starting structure.

While this procedure increases the number of false
positives,375 it produces pharmacophore models that perform
better than any single conformation model for potent
inhibitors of HIV-1 integrase.373

Relaxed Complex Method. The relaxed complex
method362,363resembles the dynamic pharmacophore method
but involves docking of whole ligand molecules to the initial
set of receptor snapshots with subsequent rescoring of the
most favorable structures within a rigorous statistical me-
chanical framework.148

It is possible that ligands may bind to conformations that
occur only rarely in the dynamics of the receptor and that
strong binding often reflects multivalent attachment of the
ligand to the receptor. Two successful experimental ap-
proaches that recognize this fact areSAR by NMR376 and
the tether method.377 The relaxed complex method was
inspired by these methods and aims to reliably consider the
induced fit at the binding site.

The relaxed complex method is a three-step process. The
first step is to generate a series of target conformations of
the receptor. This task is typically performed by selecting
representative snapshots from an apo-protein MD trajectory.
Alternative methods for generating the receptor conforma-
tions are possible. Such methods include the replica exchange
method or even just an ensemble of short time-scale MD
simulations. During the second step small libraries of
candidate ligands are docked into each representative receptor
structure. In the original work362,363the Autodock370 software
was used for this docking process, although the overall
method is independent of the choice of docking software.
The final stage seeks to improve the scoring of the predicted
binding configurations by use of a more rigorous, but
computationally expensive, method for estimating the stan-
dard free energies of binding. This rescoring process has been
demonstrated with MM/PBSA363 as implemented in the
AMBER software with the electrostatic terms calculated
using the APBS software,164 but again, the overall method
is not dependent upon this choice.

A double-ligand variation of the above procedure incor-
porates consideration of the fact that two ligands with
relatively low binding affinities might be linked to form a
single high-affinity ligand. Because the binding of the first
ligand could introduce unfavorable interactions for the

binding of the second ligand, the combination of the best-
ranked ligands for respective binding sites does not neces-
sarily produce the most favorable composite compound.
Continuing from the previous single-ligand studies, the first
ligand is treated as part of the receptor molecule and the
docking simulations of the second ligand are repeated but
limited to a region of space consistent with the allowable
lengths of linkers. As before, the binding of the second ligand
is subsequently recalculated using the more accurate ap-
proach.

Initial results presented from work applying the relaxed
complex approach covered the binding of two ligands to the
FK506 binding protein (FKBP) with conformations generated
via a 2 ns MDsimulation. This demonstrated that the ligand
binding is sensitive to conformational fluctuations in the
protein; the binding energies covered a range of 3-4 kcal
mol-1, which corresponds to a 100-1000-fold difference in
binding affinities.362 The use of MM/PBSA free-energy
evaluations allowed for correct prediction of binding modes
compared to the crystallographic structures.363

Lambda Dynamics Method.Theλ dynamics method155,156

is another technique intended for speeding up free-energy
calculations. In theλ dynamics method, another multiple-
copy method, multiple ligands are simultaneously located
in the receptor binding site. However, the interaction potential
of each ligand is reduced from its full strength. The fraction,
λi

2, of the interaction potential for each ligand is determined
dynamically during the simulation as an additional degree
of freedom. Specifically,λi is treated as a particle with a
fictitious mass. Because the interaction potential of each
ligand is reduced, the barriers for conformational transitions
are lowered. The reduced barriers allow each ligand to further
explore orientational and conformational space more readily.
The ranking of the ligands can emerge rapidly during the
simulation becauseλi

2 is rapidly able to increase for the
winners at the expense of the losers. Distinguishing the strong
binders from the weaker binders can be much faster than by
performing many individual free-energy perturbation calcula-
tions with a single ligand each time. This method has been
demonstrated to efficiently identify strong benzamidine
inhibitors of trypsin.378

7.3.2. Practical Applications of Molecular Dynamics in
Drug Discovery

There are, undoubtedly, many examples where computer
simulation and molecular dynamics have played a demon-
strated role in the discovery or development of therapeutic
drugs.4 There are particular cases where MD provided an
otherwise unavailable description of the flexibility of the
binding site to aid in the development of drug candidates. It
is hoped that MD will help in the discovery of practical
HIV-1 integrase inhibitors, for instance, as it had in the earlier
discovery of widely prescribed HIV-1 protease inhibitors.379

Concepts from HIV-1 integrase MD simulation have proved
useful in developing promising novel antiviral compounds.380

MD simulations indicated sizable fluctuations of the catalytic
site.381-383 MD studies predicted favorable binding of
compounds that utilize a hitherto unknown additional binding
trench adjacent to the catalytic site,384 as shown in Figure 2,
and this has been validated by experimental studies.380 This
has the potential to greatly reduce the likelihood of resistant
strains developing.
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8. Future Prospects and Challenges

8.1. Efficiency and Stability

Standard MD methods often fail to explore configurational
space adequately for the accurate evaluation of thermody-
namic and kinetic properties for proteins. This is partly
because such systems typically have enthalpic and entropic
barriers that are significantly higher than the thermal energy
at physiologically relevant temperatures. When systems are
trapped in local regions of configurational space over the
time scale of a simulation, due to high free-energy barriers,
they appear nonergodic.385 That is, for these systems the time
averages of observable characteristics do not equal the
corresponding ensemble averages. The simple fact that the
low-frequency motions of proteins typically correspond to
the larger conformational changes, and these are often the
more interesting motions, aggravates the issue. Such motions
sometimes do not involve crossing of a very high energy
barrier but may have a slow, diffusional character. Thus, the
problem is just a matter of sampling for an inadequate length
of time. Many different enhanced sampling methods have
been introduced in the literature, as described above, to
reduce this problem. However, no perfect solution has been
devised to date. Indeed, certain approaches are better suited
to specific systems or observable characteristics than others.
Future progress toward resolving this issue will be of great
interest.

Besides the development of improved sampling protocols,
simply enhancing the efficiency of MD routines will increase
its practical scope. For example, improvements to integrators
might allow larger time steps to be used. Likewise, improved
methods for long-range force evaluation, particularly in terms
of computational parallelization, would lead to more efficient
simulations. Each of these putative improvements is ripe for
exploration.

Fairly fundamental incremental improvements to the
underlying MD algorithms are still being made (e.g., a fast
and readily parallelized pair list construction algorithm for
nonbonded interactions was described recently386).

8.2. Electrostatics
Generalized Born treatments of electrostatics have had the

important advantage of lower computational requirements
over the more rigorous Poisson-Boltzmann treatments. With
the recent development of Poisson-Boltzmann solvers that
are fast enough to conduct simulations for proteins,164,387,388

it would be desirable to choose Poisson-Boltzmann methods
when the drawbacks of GB might affect the conclusions
being drawn from a simulation. While analogous methods
that use Poisson-Boltzmann rather than generalized Born
treatments of the electrostatics require no conceptual jumps,
those methods cannot be implemented as efficiently as GB
at this time. The necessary theory for determining forces and
MD trajectories from the Poisson-Boltzmann formalism
exists387,389,390but can be prohibitively expensive to calculate
at present. Analytical methods for higher order derivatives
in such methods are desired.

8.3. Solvation and Solvent Models
Improvements to the speed and accuracy of calculations

regarding solvent will be particularly beneficial. Speed
increases will be useful because a major portion of a typical
simulation will consist of solvent. Accuracy improvements
are important because the solvent often mediates important
aspects of protein structure, dynamics, and function. Repli-
cating explicit solvent effects with new implicit solvent
models will help to advance the understanding of such
aspects. Currently, specific interactions, solvation shells, and
long-range order are ignored in most implicit models,
although some hybrid methods do seek to resolve this. In
particular, the poor correlation between apolar solvation
forces exhibited in explicit solvent simulations and implicit
solvent simulations needs to be addressed.99,97

8.4. MD in Ligand Docking and Molecular Design
Studies

While protein flexibility undoubtedly plays a critical role
in determining molecular recognition, most drug design and
modeling efforts disregard these effects since they are
computationally expensive to include. With the rapid progress
in algorithms and computational resources, as discussed in
this review, it is becoming feasible to consider these effects
in a wider range of drug discovery tasks. The more
demanding but rigorous free-energy calculation methods can
often be used in the later stages of lead optimization. The
more rapid but approximate methods, those relying on single
reference states, can be used to quickly identify favorable
and unfavorable features of a putative lead compound in
molecular recognition. The identification and classification
of these features can help to suggest modifications of the
compound to improve binding affinities. These features also
aid in construction of pharmacophore models for locating
possible alternative lead compounds from chemical libraries
or databases. Even the generation of improved libraries can
be assisted via the use of pharmacophore-based constraints
in their design. Free-energy methods that may be considered
intermediate to the two extremes, for example, MM/PBSA
and the semiempirical linear response approach, can be
utilized to further screen out less promising compounds
suggested by the single reference state models before more
rigorous free-energy calculations are performed. Improved
implicit or hybrid implicit/explicit solvent models also have
a role in facilitating rapid conformational sampling, allowing

Figure 2. Two predicted binding conformations of a HIV-1
integrase inhibitor, 5CITEP, to a MD snapshot of the protein. The
green conformation is similar to that in the crystal structure392 and
the purple is in a secondary predicted binding trench.
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protein flexibility to be fully accounted for in the early stages
of a rational drug design process.

8.5. Benchmarks
Benchmarks are inherently subjective; it is impossible to

objectively compare all MD algorithms or software on equal
terms when they have widely differing capabilities and aims.
However, there are certain common example simulations,
or analysis tasks, that are amenable to benchmarking for both
numerical accuracy and computational cost. The MD com-
munity would benefit greatly from a diverse set of well-
conceived and publicly available benchmark tests based on
these.

There are few direct comparisons of the various accelerated
sampling techniques in the literature, for example. A standard
set of benchmark tests would alleviate the need for research-
ers to setup and run unfamiliar methods and software to fairly
compare these against newly developed approaches. This
would be of particular value when methods are specifically
developed, or optimized, for computer systems unavailable
to the researchers who would otherwise be performing the
comparisons.

8.6. Computing Facilities
MD continues to benefit immensely from improvements

in computer technology. As computers become faster, it has
become possible to handle larger molecules and explore their
dynamics for longer time scales. Moreover, the recent advent
of Beowulf-style clusters has resulted in a considerable
increase in the number of research groups able to undertake
biomolecular simulations. Currently, a typical simulation
might have a system size of around 105-106 atoms, and a
multiple nanosecond simulation will probably require of the
order of 106-107 time steps. Such a simulation could be
expected to take a couple of weeks on between 8 and 32
processors (obviously this is highly dependent on the nature
of the particular protocols employed and on the efficiency
of the simulation software). During this period it could
generate gigabytes of data for subsequent analysis and
visualization. Computer resources with the capability of
handling and storing such large quantities of data are now
widely available, but meaningful visualization is increasingly
becoming a challenging task. The tools and techniques
developed for large-scale data-mining efforts will also be
increasingly valuable in the study of MD trajectories.

8.7. BioSimGrid
As just indicated, a typical and routine large-scale MD

simulation might produce several gigabytes of raw data that
needs to be processed when complete. An additional
unresolved issue faced by the developers and users of modern
molecular dynamics technology is the archival, indexing, and
dissemination of this output data. Building upon the current
efforts toward Grid computing, BioSimGrid (http://
www.biosimgrid.org/) may provide the solution or insight
toward future solutions. BioSimGrid is a collaborative project
between several of the leading U.K. research groups in the
field of molecular simulation.391

The BioSimGrid project seeks to build, using Grid
technology, a publicly accessible database of biomolecular
simulation data. The data will include the raw simulation
output, information about the generic properties of that output
and the corresponding software configuration data, and

information derived from analysis of the raw data. One
valuable outcome of such a database might be integration
of the simulation data with experimental and bioinformatic
data, opening a wide range of data-mining possibilities.

9. Summary
MD simulations of proteins have provided many insights

into the internal motions of these biomolecules. Simulation
of in silico models aids in the interpretation and reconciliation
of experimental data.

With ongoing advances in both methodology and com-
putational resources, molecular dynamics simulations are
being extended to larger systems and longer time scales. This
enables investigation of motions and conformational changes
that have functional implications and yields information that
is not available through any other means. Today’s results
suggest that (subject to the continuing utilization of synergies
between experiment and simulation) the applications of
molecular dynamics will command an increasingly critical
role in our understanding of biological systems.

Investigation of the structural and functional characteristics
of intriguing biochemical systems is being made possible
by computer simulation with techniques such as molecular
dynamics.
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11. Abbreviations
AGBNP analytic generalized Born and nonpolar
AFM atomic force microscopy
BD Brownian dynamics
BPTI bovine pancreatic trypsin inhibitor
DEM diffusion equation method
ED essential dynamics
FEP free-energy perturbation
FM fast multipole
GB generalized Born model
IMD interactive molecular dynamics
LES locally enhanced sampling
LIE linear interaction energy
LINCS linear constraint solver
MBO(N)D multiple-body O(N) dynamics
MC Monte Carlo
MD molecular dynamics
MEHMC momentum-enhanced hybrid Monte Carlo method
MM molecular mechanics
MM/GBSA molecular mechanics/generalized Born-surface area

method
MM/PBSA molecular mechanics/Poisson Boltzmann-surface

area method
PCA principal component analysis
PMEMD particle mesh Ewald molecular dynamics
PMF potential of mean force
QM/MM hybrid quantum mechanics/molecular mechanics
REMD replica exchange molecular dynamics
RESPA reversible reference system propagator algorithms
SA simulated annealing
SASA solvent-accessible surface area
SGMD self-guided molecular dynamics
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SMD steered molecular dynamics
TI thermodynamic integration
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